Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Underwater structural damage inspection has mainly relied on diver-based visual inspection, and emerging technologies include the use of remotely operated vehicles (ROVs) for improved efficiency. With the goal of performing an autonomous and robotic underwater inspection, a novel Tactile Imaging System for Underwater Inspection (TISUE) is designed, prototyped, and tested in this paper. The system has two major components, including the imaging subsystem and the manipulation subsystem. The novelty lies in the imaging subsystem, which consists of an elastomer-enabled contact-based optical sensor with specifically designed artificial lighting. The completed TISUE system, including optical imaging, data storage, display analytics, and a mechanical support subsystem, is further tested in a laboratory experiment. The experiment demonstrates that high-resolution and high-quality images of structural surface damage can be obtained using tactile ‘touch-and-sense’ imaging, even in a turbid water environment. A deep learning-based damage detection framework is developed and trained. The detection results demonstrate the similar detectability of five damage types in the obtained tactile images to images obtained from regular (land-based) structural inspection.

Details

Title
Development of Tactile Imaging for Underwater Structural Damage Detection
Author
Chen, Xi 1 ; Wu, Gang 1 ; Hou, Shitong 1 ; Fan, Jiajun 1 ; Dang, Ji 2 ; Chen, Zhiqiang 3   VIAFID ORCID Logo 

 Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China[email protected] (S.H.); [email protected] (J.F.) 
 Department of Civil and Environmental Engineering, Saitama University., Saitama 338-8570, Japan; [email protected] 
 School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA; [email protected] 
First page
3925
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535488654
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.