Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nvidia is a leading producer of GPUs for high-performance computing and artificial intelligence, bringing top performance and energy-efficiency. We present performance, power consumption, and thermal behavior analysis of the new Nvidia DGX-A100 server equipped with eight A100 Ampere microarchitecture GPUs. The results are compared against the previous generation of the server, Nvidia DGX-2, based on Tesla V100 GPUs. We developed a synthetic benchmark to measure the raw performance of floating-point computing units including Tensor Cores. Furthermore, thermal stability was investigated. In addition, Dynamic Frequency and Voltage Scaling (DVFS) analysis was performed to determine the best energy-efficient configuration of the GPUs executing workloads of various arithmetical intensities. Under the energy-optimal configuration the A100 GPU reaches efficiency of 51 GFLOPS/W for double-precision workload and 91 GFLOPS/W for tensor core double precision workload, which makes the A100 the most energy-efficient server accelerator for scientific simulations in the market.

Details

Title
DGX-A100 Face to Face DGX-2—Performance, Power and Thermal Behavior Evaluation
First page
376
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2478294810
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.