Diatoms are distributed in different aqueous habitats ranging from freshwater to brackish waters across a varying altitudinal gradient. They are helpful environmental indicators due to the sensitivity of each species to changes in the water’s physical, chemical and biological conditions (Sabater 2009). Besides colonising in freshwater and marine habitats around the world, diatoms colonise in a variety of habitats including acidic swamps, alkaline lakes, and hot springs (Hecky & Kilham 1973; Sanchez et al. 1987; Ligowski et al. 1992; Owen et al. 2008). High-altitude environments represent unique environmental settings with cold-climate and dry conditions (Wolfe 2013). Water bodies here include different categories within it, such as lakes, ponds, rivers, glaciers, glacial lakes, hot springs, etc. They are characterised by a unique diversity of water sources, habitats, species, and communities, and generally show limited human interference compared to other water bodies (Kumar and Lamsal 2016). The climatic conditions of the high-altitude region of Ladakh possess extremes of weather combinations such as extreme cold in winter, water scarcity, and intense heat in summer during the day and cold at night, along with very low atmospheric pressure and oxygen (Chaurasia et al. 2007; Dorjey 2019).
At high altitude, of more than 3500 amsl, hot springs, lakes and wetlands possesses extreme environmental conditions such as low temperatures, low nutrients, and short growing times, and they spend a large part of the year under ice and snow. Therefore, they usually have nutrient-poor conditions. This extreme climatic and physico-chemical condition supports diatom assemblage, unique to this high-altitude water bodies (Şahin and Barinova 2022).
The distinctive composition and abundance of diatom species in a water body is influenced by various factors, including pH, ionic strength, nutrient concentrations, temperature, light, oxygen saturation, and habitat availability (Patrick & Reimer 1966; Round 1981; Stevenson et al. 1996). Most of these factors depend strongly on climate, geology, topography, land use and other landscape characteristics (Potapova and Charles 2002). Thus, as each diatom species has its own specific water quality requirements, they can serve as a powerful indicator of environmental changes in the freshwater aquatic systems (Dixit et al. 1992; Smol and Stoermer 2010; Stevenson et al. 2010). However, prerequisite to the monitoring of an aquatic environment using biological organisms such as diatoms is a proper understanding of the diatom ecology, as these aquatic organisms are regularly exposed to that environment, and can provide information about the environmental conditions and the ecological health of the particular ecosystem (Thacker and Karthick 2022). Many diatom species are known to have world-wide distributions, while others appear limited to certain climatic zones or geographical regions, or are endemic to particular water bodies, such as ancient lakes. According to Kociolek & Spaulding (2000), the proportion of geographically restricted diatom species is much higher than formerly thought, which points towards the importance of geographical factors in explaining patterns in diatom flora (Potapova and Charles 2002). Thus, for diatom-based water quality monitoring, a preliminary requirement is to determine the diversity and taxonomy of diatoms, which will assist the furthering of knowledge of diatom ecology and species bio-geographical distribution.
The present work deals with the diatom diversity of one of the highest-altitude aquatic environments in the world – Ladakh, Western Himalayas. It is an arid desert with very scarce natural vegetation, and most land cover is < 3500 above mean sea level (amsl). With a highly pristine, freezing environment, precipitation and hot-spring zones scattered close to the Indus Tsangpo Suture Zone (ITSZ), Ladakh can be considered a type of area for studying life in extreme environments (Ansari et al. 2020). Researchers have studied and observed the geothermal potential and microbial biodiversity of a few hot springs across the Leh and Ladakh regions. Plants such as Ladakiella klimesii (Al-Shehbaz), an endemic crucifer that found at elevations up to 6150 amsl, tolerate the extreme cold of Ladakh. According to the study, 70–80% of the higher plants found in Nubra Valley of Ladakh are restricted to valley regions and not recorded in other locations (Joshi et al. 2006). Apart from plants, this region is also home to 60 percent of India’s snow leopard population (Chundawat & Qureshi 1999; Guisan & Thuiller 2005).
Prior studies on the diatoms from the Western Himalayas include a pioneering work by Compère (1983) with a record of 480 algal species, out of which Kashmir and the high valleys of the Ladakh region alone comprised 229 diatoms species. Kumar et al. (2012) presented a similar study of diatoms in three high-altitude lakes and the Indus River of the trans-Himalayas, and recorded 193 species of diatoms. Recent work by Phartiyal et al. (2020) reports the late-Holocene climatic record in glacial lake sediments and documented 13 diatom taxa from Ladakh. The study revealed that Amphora ovalis (Kützing) Kützing showed a drastic peak, indicating the dynamics of aquatic ecosystems in the high-altitude region.
On reviewing the different studies on diatom assemblages of high altitudes worldwide, the overall altitude ranged from 1,030 amsl (Schneck et al. 2007) to 4,308 amsl (Blanco et al. 2013). In a survey of 60 high mountain lakes of Colombia’s Eastern range, researchers explained how the water characteristics are significant in high-altitude ecosystems and responsible for the species composition. An investigation from the high-altitude Andean saline lakes sites (4130 to 4308 amsl) described six diatom taxa. In one of the earliest studies of diatoms in Mount Kenya, samples were collected from a high-altitude pond (4358 amsl in which the diatoms were mentioned as ‘acidobionts’, i.e., acidophilic species (below pH 6). However, the study did not specify the alpine character of the sites (Cholnoky 1960). A subsequent study of the Rwenzori mountains put forth the diatom diversity at high-altitude ranging from 3734–4465 amsl (Cholnoky 1964). The study by Cantonati et al. (2001) reported only a few species explicitly from unique environments such as high-altitude hot springs. Their sample locations originate from the Himalayas and reach an altitude of 4697 amsl. Colla et al. (2021) studied diatom assemblages from four saline wetlands of Argentinian Puna at an altitude of 3330 amsl. The authors explain the various environmental factors that affect ecological parameters at the diatom community level. Recently, Islam et al. (2021) studied the land use land cover (LULC) of some high-altitude mountain lakes in Kashmir Himalaya. The quality index revealed excellent water quality, while the algal composition comprised 45 diatom species amongst 61 taxa studied.
The hot springs in the Ladakh region are located in one of the world’s highest mountain regions. Even though the unique biodiversity of this region is of interest due to its easily accessible terrain compared to all other high-altitude places on the Earth, the research reflecting the taxonomic and ecological account of diatoms is scarce. Hence, the present study aims to investigate and document the commonly occurring diatom flora in various aquatic ecosystems of the Ladakh region.
2.Materials and methods2.1.Study area
The land surface of Ladakh covers an area of 95,876 km2 encompassing two zones, a lower zone starting at the altitude of 2700–4500 amsl, and the upper zone above 4500 amsl, which covers 74 percent of the land (Smallman & Brown 2015; Bhat 2015). The present study covered the lower region and reached an altitude of 4552 amsl. The sampling sites include multiple habitats such as lakes, rivers, streams, hot springs, and Tso Moriri, a saline lake (Fig. 1). The collection of diatom samples was undertaken during May and June 2019 and September 2020. The sample details are given in Table 1.
Table 1 The sample collection details of different localities of the study area (– indicates that no information is available)S.No. | Acc. No. AHMA | Location | Habitat/Microhabitat | Latitude (°N) | Longitude (°E) | Elevation (a.m.s.l.) | Temp. (°C) | Collector’s Name |
---|---|---|---|---|---|---|---|---|
1 | 1343 | Puga, Ladakh | - | 33.227699 | 78.303133 | 4422 | – | Dr. Raymond Duraiswami |
2 | 1344 | - | 33.227731 | 78.303027 | 4421 | – | ||
3 | 1345 | Chumathang hot Spring, Ladakh | Stream, Epiphytic | 33.602777 | 78.323055 | 4022 | 80 | |
4 | 1346 | 33.360277 | 78.323055 | 4022 | 53 | |||
5 | 1347 | 33.360555 | 78.324444 | 4028 | 42 | |||
6 | 1348 | 33.360555 | 78.324444 | 4028 | 32 | |||
7 | 1349 | Pool, Epiphytic | 33.360277 | 78.324722 | 4024 | 50 | ||
8 | 1350 | 33.360555 | 78.324722 | 4030 | 50 | |||
9 | 1351 | 33.360277 | 78.323055 | 4024 | 53 | |||
10 | 1352 | Stream, Epiphytic | 33.360277 | 78.323055 | 4021 | 52 | ||
11 | 1353 | 33.361001 | 78.323055 | 4017 | 30 | |||
12 | 1354 | Small man made gutter, Epilithic | 33.36055 | 78.323333 | 4024 | 80 | ||
13 | 2097 | Nacho Resort, Hunder, Nubra Valley, Leh | Stream, Epibryophytic | 34.58945 | 77.462821 | 3150 | – | Dr. Aravind Madhyastha |
14 | 2098 | Stream, Epilithic | 34.58945 | 77.462821 | 3150 | – | ||
15 | 2643 | Guphunks, Spituk, Leh | Pond, Epiphytic | 34.1352 | 77.50394 | 3196 | – | |
16 | 2644 | Indus river, Leh | River, Epilithic | 34.1021 | 77.58858 | 3229 | – | |
17 | 2645 | Stream, Epilithic | 34.10215 | 77.58858 | 3229 | – | ||
18 | 2646 | 34.10215 | 77.58858 | 3229 | – | |||
19 | 2647 | Tiri Village, Leh | Stream, Epiphytic | 34.5895 | 77.4628 | 3229 | – | |
20 | 2648 | River, Epiphytic | 33.61345 | 78.08371 | 3705 | – | ||
21 | 2649 | Chumathang, Leh | River, Epilithic | 33.36108 | 78.32324 | 4031 | – | |
22 | 2650 | Tso Moriri Lake, Ladakh | Stream, Epilithic | 33.19381 | 78.35872 | 4543 | – | |
23 | 2651 | Lake, Epilithic | 32.96487 | 78.26185 | 4552 | – | ||
24 | 2652 | Lake, Epiphytic | 32.99837 | 78.25989 | 4541 | – | ||
25 | 2653 | Puga, Ladakh | Stream, Epiphytic | 33.22669 | 78.31535 | 4420 | – | |
26 | 2654 | 33.22669 | 78.31535 | 4420 | – | |||
27 | 2655 | Tso kar lake, Leh | Lake, Epiphytic | 33.32573 | 77.7433 | 4126 | – | |
28 | 2656 | Gya village, (near ice stupa cafe) | Stream, Epilithic | 33.64404 | 77.7633 | 4126 | – | |
29 | 2657 | Hunder, Nubra valley | River, Epiphytic | 34.5738 | 77.50023 | 3100 | – | |
30 | 3320 | Shey-chuchot road. Indus river | 34.05812 | 77.640838 | 3240 | – | ||
31 | 3321 | 34.05812 | 77.640838 | 3240 | – | |||
32 | 3322 | River, Sediment+Episamic | 34.05812 | 77.640838 | 3240 | – | ||
33 | 3323 | 34.05812 | 77.640838 | 3240 | – | |||
34 | 3324 | Mathoo raod, near Husainiya Chuchot Gongma | River, Epilithic | 33.99742 | 77.63501 | 3484 | – | |
35 | 3325 | Stakna Bridge, Indus river | River, Epiphytic | 34.007556 | 77.688138 | 3273 | – | |
36 | 3326 | River, Epilithic | 34.007556 | 77.688138 | 3273 | – | ||
37 | 3327 | Mughalpura, Srinagar-Leh Highway | Stream, Epiphytic | 34.330304 | 75.572423 | 3271 | – |
At each sampling site, diatoms were sampled from all possible microhabitats (epiphytic, epilithic and epibryophytic). In a clean polythene bag, the plant materials along with water were taken and shaken vigorously to dislodge the diatoms attached to the surface of the plant material. The moss-attached diatoms, also known as epibryophytic diatoms, were squeezed and washed with water to obtain a brown suspension and transferred into Whirlpak® sample bags. Epilithic diatoms were scraped with a knife or spoon and poured into sample bags that contained a small amount of water. The water temperature in the hot springs sites was measured using the HANNA handheld meter. The geographical coordinates and altitude readings were recorded at each sampling site using a GARMIN ETREX® Global Positioning System. The geo-coordinates were used to prepare the study area map (Fig. 1) using QGIS 3.14.0. Two site coordinates (S. No. 1 and 2 in Table 1) were extracted from Google Earth. The diatom samples were transported to the laboratory for further analysis.
2.3.Sample processing
The laboratory procedure involves the oxidisation of diatom samples using Nitric Acid (HNO3) at 90°C for about 1–3 hours to remove organic matter. The process is followed by repeated rinsing and centrifugation at 3000 rpm for 10 minutes with distilled water. The cleaning procedure is repeated at least four times or until the sample reached a neutral pH. Finally, the cleaned samples were labelled and stored in glass vials and archived at AHMA – Agharkar Research Institute Herbarium, Pune.
Table 2 List of taxa present in each of the diatom samples collected from LadakhS.no | Taxa name | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Stephanocyclus meneghinianus | + | ||||||||||||||||||||||||||||||||||||
2 | Lindavia biswashanti | + | ||||||||||||||||||||||||||||||||||||
3 | Diatoma vulgaris | + | + | + | + | + | ||||||||||||||||||||||||||||||||
4 | Diatoma moniliformis | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
5 | Fragilaria rinoi | + | + | |||||||||||||||||||||||||||||||||||
6 | Fragilaria vaucheriae | + | + | + | + | + | ||||||||||||||||||||||||||||||||
7 | Hannaea arcus | + | + | + | ||||||||||||||||||||||||||||||||||
8 | Hannaea baicalensis | + | ||||||||||||||||||||||||||||||||||||
9 | Odontidium mesodon | + | + | + | ||||||||||||||||||||||||||||||||||
10 | Pseudostaurosira cf. brevistriata | + | ||||||||||||||||||||||||||||||||||||
11 | Pseudostaurosira subconstricta | + | ||||||||||||||||||||||||||||||||||||
12 | Staurosira cf. tabellaria | + | + | |||||||||||||||||||||||||||||||||||
13 | Ulnaria ulna | + | ||||||||||||||||||||||||||||||||||||
14 | Anomoeoneis sphaerophora | + | ||||||||||||||||||||||||||||||||||||
15 | Stauroneis seperanda | + | ||||||||||||||||||||||||||||||||||||
16 | Brachysira cf. procera | + | ||||||||||||||||||||||||||||||||||||
17 | Caloneis falcifera | + | + | |||||||||||||||||||||||||||||||||||
18 | Craticula simplex | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
19 | Craticula sp. | + | + | |||||||||||||||||||||||||||||||||||
20 | Fallacia pygmaea | + | ||||||||||||||||||||||||||||||||||||
21 | Frustulia vulgaris | + | ||||||||||||||||||||||||||||||||||||
22 | Navicula radiosa | + | + | + | ||||||||||||||||||||||||||||||||||
23 | Navicula tripunctata | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
24 | Navicula cf. krammerae | + | + | |||||||||||||||||||||||||||||||||||
25 | Navicula cf. libonensis | + | + | + | ||||||||||||||||||||||||||||||||||
26 | Navicula cincta | + | + | + | + | |||||||||||||||||||||||||||||||||
27 | Navicula gregaria | + | + | |||||||||||||||||||||||||||||||||||
28 | Navicula caterva | + | + | + | + | + | ||||||||||||||||||||||||||||||||
29 | Navicula reinhardtii | + | ||||||||||||||||||||||||||||||||||||
30 | Pinnularia sp.1 | |||||||||||||||||||||||||||||||||||||
31 | Pinnularia globiceps | + | ||||||||||||||||||||||||||||||||||||
32 | Pinnularia brebissonii | + | + | + | + | |||||||||||||||||||||||||||||||||
33 | Neidium sp.1 | + | ||||||||||||||||||||||||||||||||||||
34 | Neidium bisulcatum var. subampliatum | + | ||||||||||||||||||||||||||||||||||||
35 | Sellaphora cf. auldreekie | + | + | |||||||||||||||||||||||||||||||||||
36 | Sellaphora sp.1 | + | + | + | + | + | ||||||||||||||||||||||||||||||||
37 | Achnanthidium pyrenaicum | + | + | + | + | + | + | + | + | + | ||||||||||||||||||||||||||||
38 | Achnanthidium saprophilum | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
39 | Gogorevia exilis | + | + | + | ||||||||||||||||||||||||||||||||||
40 | Cocconeis lineata | + | + | + | + | + | + | + | + | + | ||||||||||||||||||||||||||||
41 | Aneumastus minor | + | ||||||||||||||||||||||||||||||||||||
42 | Psammothidium bioretii | + | + | |||||||||||||||||||||||||||||||||||
43 | Gomphonema minutum | + | + | + | ||||||||||||||||||||||||||||||||||
44 | Gomphonema parvulum | + | + | + | + | + | + | + | + | |||||||||||||||||||||||||||||
45 | Gomphonella cf. qii | + | ||||||||||||||||||||||||||||||||||||
46 | Gomphosinica hedinii | + | + | + | + | + | ||||||||||||||||||||||||||||||||
47 | Gomphonella cf. olivacea | + | + | + | + | + | + | + | + | |||||||||||||||||||||||||||||
48 | Reimeria sinuata | + | + | + | + | + | ||||||||||||||||||||||||||||||||
49 | Amphora ovalis | + | ||||||||||||||||||||||||||||||||||||
50 | Amphora copulata | + | ||||||||||||||||||||||||||||||||||||
51 | Cymbella nepalensis | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
52 | Cymbella lange-bertalotii | + | + | |||||||||||||||||||||||||||||||||||
53 | Cymbella alpestris | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
54 | Encyonema silesiacum | + | + | + | ||||||||||||||||||||||||||||||||||
55 | Encyonema ventricosum | + | + | + | + | + | ||||||||||||||||||||||||||||||||
56 | Encyonopsis cesatii | + | + | + | + | |||||||||||||||||||||||||||||||||
57 | Encyonopsis microcephala | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
58 | Epithemia turgida | + | + | |||||||||||||||||||||||||||||||||||
59 | Epithemia proboscidea | + | ||||||||||||||||||||||||||||||||||||
60 | Epithemia sorex | + | + | |||||||||||||||||||||||||||||||||||
61 | Rhopalodia gibberula | + | ||||||||||||||||||||||||||||||||||||
62 | Denticula valida | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
63 | Denticula thermaloides | + | + | + | + | + | + | + | ||||||||||||||||||||||||||||||
64 | Nitzschia commutata | + | + | |||||||||||||||||||||||||||||||||||
65 | Nitzschia palea | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
66 | Nitzschia denticula | + | + | + | + | + | ||||||||||||||||||||||||||||||||
67 | Nitzschia pusilla | + | ||||||||||||||||||||||||||||||||||||
68 | Nitzschia hantzschiana | + | + | + | ||||||||||||||||||||||||||||||||||
69 | Nitzschia puriformis | + | + | |||||||||||||||||||||||||||||||||||
70 | Nitzschia paleaeformis | + | + | + | + | + | + | + | ||||||||||||||||||||||||||||||
71 | Tryblionella hungarica | + | + | + | + | + | + | |||||||||||||||||||||||||||||||
72 | Cymatopleura apiculata | + | ||||||||||||||||||||||||||||||||||||
73 | Surirella angusta | + | + | + | ||||||||||||||||||||||||||||||||||
74 | Surirella brebissonii | + |
The cleaned material was air-dried on the coverslips and mounted with Naphrax® mounting medium for preparing permanent slides. Microscopic observations were made using the Olympus BX 53 (Tokyo, Japan) microscope, equipped with Differential Interference Contrast optics with a 100× 1.4 oil immersion objective. Light Microscopic plates were prepared using GIMP (version 2.10.22) and Inkscape (version 1.0.2) open-source software. All taxa were identified using relevant monographs and papers given under the description of each taxon. The taxa descriptions presented here are based on our measurements from the photomicrographs taken using an Olympus DP 73 digital camera with cellSens standard 1.16 imaging software.
3.ResultsDuring the study, the highest altitude record in the Ladakh region was 4552 amsl at Tso Moriri Lake, the minimum was 3100 amsl at Hunder, in Nubra Valley. A total of thirty-seven samples from 19 different sites at varying altitudes and habitats, such as streams (16 samples), rivers (11 samples), lakes (3 samples), pools (3 samples), a pond (1 sample), unknown (3 samples) were collected. Amongst these, ten samples were from hot springs of the Chumthang region. If we classify the collection of the samples, microhabitats wise, then most of the samples were from epiphytic (20) and epilithic (12) microhabitats. The remainder of the samples were from epibryophytic (1), epipsammic (2), and unknown (2) microhabitats. We identified 74 taxa belonging to 40 genera, including 7 infraspecific (cf.) taxa and 4 unidentified taxa. The following is a list of diatom taxa provided with the literature reference, morphological data, and location with a sample accession number.
3.1.Description of characteristic features of the identified diatom taxa
Stephanocyclus meneghinianus (Kützing) Kulikovskiy, Genkal & Kociolek, 1844 Fig. 2 (1–3)
Ref. Kützing, 1844 (p. 5; pl. 30: 68); Foged, 1966 (p. 49; pl. 1; 4–8); Olszyński, R. M., & Żelazna-Wieczorek, J., 2018 (p. 164; pl. 168: 113–120; pl. 170: 127–133; Kulikovskiy, M. et al., (2022)
The valve is disc-shaped, with a typical tangential undulation of the smooth central area and a diameter of 10.0–15.6 μm and well-defined striae 9–13 per 10 μm. The valve face is flat and circular. The central area is distinct and isolated from the marginal chambered striae. The central area contains 1–3 fultoportulae, which are distinctly visible in LM.
Habitat: pool; Microhabitat: Epiphytic; Location: Chumthang Hot Springs
Lindavia biswashanti J. Mohan & Jeff R. Stone 2018, Fig. 2 (4–6)
Ref. Mohan & Stone, 2018 (p. 102; pl. 104: A–I)
The valve is similar to a disc; the valve face is separated into a hyaline central area and a marginal area with radial striae and alternating three wedge-shaped distinctly triangular depressions. The central area exhibits radial undulations and comprises 2/3 of the valve face area. The diameter is 6.8–13.6 μm and striae number 15.0–19.0 per 10 μm.
Habitat: lake; Microhabitat: Epiphytic; Location: Tso Moriri Lake, Ladakh
Diatoma vulgaris Bory 1824, Fig. 2 (7–9)
Ref. Bory, 1824 (p. 446; 1), Lange-Bertalot et al., 2017 (p. 187; pl. 4:1–6), Kulikovskiy et al., 2016 (p. 92; pl. 8:1–4), Bey & Ector, 2013 (p. 20; pl. 205:1–25)
The valve is elliptic to lanceolate with broadly-rounded sub-rostrate ends and rimoportula present near one apex of the valve. The valve length is 36.5–50 μm and the width is 10.6–11.2 μm. The central area is vacant. The axial area is linear to very narrow. The transapical ribs number 7–8 per 10 μm. Striae are not visible in LM.
Habitat: stream, river; Microhabitat: Epilithic, Epiphytic, Epipsammic; Location: Indus River, Leh, Hunder, Nubra Valley, Shey-Chuchot Road
Diatoma moniliformis (Kütz.) D. M. Williams 2012, Fig. 2 (10–12)
Ref. Williams, 2012 (p. 260; pl. 259: 3–5), Lange-Bertalot et al., 2017 (p. 185; pl. 3: 18–20), Bey & Ector, 2013 (p. 200; pl. 201: 1–43)
The valve is elliptical, lanceolate with rounded to sub-capitate apices. The length is 19.5–32.5 μm and the width is 3.1–4.8 μm. The central area is vacant. Transapical ribs number 5–6 per 10 μm. Striae are not visible in LM.
Habitat: stream, river; Microhabitat: Epilithic; Location: Indus River, Leh, Stakna Bridge
Fragilaria rinoi Almeida & C. Delgado 2016, Fig. 2 (13, 14)
Ref. Delgado et al., 2016 (p. 248; pl. 6: 3–77)
The valve is lanceolate in larger specimens to rhombic lanceolate in smaller specimens, with rostrate ends. The length is 13.5–15 μm and the width is 5.3–5.5 μm. Pseudo-raphe narrow, linear, central area larger. The central area is vacant, although ghost striae may be present. Striae number 14 per 10 μm and are parallel to the central area, becoming slightly radiate at the poles.
Habitat: stream and river; Microhabitat: Epibryophytic, Epilithic; Location: Naycho Resort, Hunder, Nubra Valley, Leh, Indus River, Stakna Bridge.
Fragilaria vaucheriae (Kütz.) J. B. Petersen 1938, Fig. 2 (15–19)
Ref. Rumrich et al., 2000 (p. 246; pl. 247: 7–13), Roy & Keshri, 2016 (p. 9–10; pl. 10:15–16), Siver et al., 2005 (p. 91; pl. 269: 11–18)
The valve is lanceolate to linear elliptical, narrowing to rostrate, slightly capitate apices. The length is 16.2–23.5 μm, and the width is 3.2–4.3 μm. A pseudoraphe is present and narrow; the central area clearly visible on one side, and slightly inflated. Ghost striae devoid of ornamentation are observed. Striae number 10–14 per 10 μm and are mostly parallel, and radiate slightly towards the apices.
Habitat: stream; Microhabitat: Epibryophytic; Location: Naycho Resort, Hunder, Nubra Valley, Leh, and Tso Moriri Lake, Ladakh
Hannaea arcus (Ehrenb.) R. M. Patrick 1966, Fig. 2 (20–22)
Ref. Patrick & Reimer, 1966 (p. 13; pl. 4: 20), Lange-Bertalot et al., 2017 (p. 336; pl. 5: 8–12), Bixby & Jahn, 2005 (p. 222; pl. 223: 9–19)
The valve is arcuate, with a convex dorsal margin and a concave ventral margin. Apices of the valve are sub-capitate. The length is 37.4–43.7 μm and the width is 5.4–6.2 μm. The central region features a swelling of the ventral margin, and the central area is entirely vacant, although ghost striae may be present. The axial area is narrow and linear. Striae number 12–18 per 10 μm and are parallel to slightly radiate near the apices.
Habitat: stream and lake; Microhabitat: Epibryophytic and Epililthic; Location: Naycho Resort, Hunder, Nubra Valley, Leh and Tso Moriri Lake, Ladakh
Hannaea baicalensis Genkal, Popovskaya & Kulikovskiy 2008, Fig. 2 (23–25)
Ref. Genkal et al., 2008 (p. 322; pl. 1: 1–13), Vishnjakov et al., 2015 (p. 223; pl. 226: a–j), Kulikovskiy et al., 2016 (p. 99; pl. 13: 4–6)
The valve is arcuate, with tapering apices, a convex dorsal margin and concave ventral margin. It is slightly sub-rostrate at both apices. The length is 46.8–56.2 μm and the width is 6.2–6.5 μm. The central region is swollen in the ventral margin and central area is entirely vacant or has ghost striae. Axial area is narrow, linear. Striae number 17–18 per 10 μm and are parallel to slightly radiate near the apices. Striae are easily visible in LM.
Remarks: This is the first time this taxon is recorded outside the type locality (Lake Baikal). The presence of this taxon proposes that there could be some biogeography link with central Asia.
Habitat: stream; Microhabitat: Benthic; Location: Naycho Resort, Hunder, Nubra Valley, Leh
Odontidium mesodon (Kütz.) Kütz. 1849, Fig. 2 (26, 27)
Ref. Kützing, 1849 (p. 12), Lange-Bertalot et al., 2017 (p. 468; pl. 3: 6–10)
The valve is elliptical-lanceolate, with broadly rounded apices. The length is 10–12.1 μm and the width is 4.9–5.6 μm. The central area is vacant. Transapical ribs number 6–8 per 10 μm.
Habitat: stream and river; Microhabitat: Epilithic; Location: Indus River, Leh
Pseudostaurosira cf. brevistriata (Grunow) D.M.Williams & Round, 1988 Fig. 2 (28–32)
Ref. Williams & Round, 1988 (p. 276; 28–31); Lange-Bertalot et al., (2017 p. 530; pl. 10:27–31); Kulikovskiy et al., 2016 (p. 101; pl. 11: 56–66)
The valve is broadly lanceolate to elliptic, with broadly rounded ends with a flat valve face. The frustules are rectangular. The length is 16.4–18.1 μm and the width is 5.6–5.9 μm. The central area is vacant. The axial area is lanceolate and wider. Striae number 9–10 per 10 μm, and are short, distinct, extend onto the mantle and are parallel to the central area and radiate toward the ends.
Habitat: lake; Microhabitat: Epiphytic; Location: Tso Moriri Lake, Ladakh
Remarks: Pseudostaurosira brevistriata was originally described by Williams & Round (1988, 1987, page 276, Figs. 28–31), Fragilaria brevistriata Grunow in Van Heurck, Syn. Diat. Belgique 157. Plate 45. Fig. 32. The valve is more linear to lanceolate and apices are narrow capitate with a striae density of 12–17 per 10 μm. (Lange-Bertalot et al., 2017, page 530, Figs. 29–31). Our specimen resembles this species but is slightly linear to lanceolate, and the apices are broad with striae density less than the described range of 9–10 per 10 μm (Tomonori Naya et al., 2007, page 65, Fig. 15, striae 14–18 vs 9–10 per 10 μm). Therefore, for the moment we are not confirming the sample as Pseudostaurosira brevistriata. This taxon requires further attention in future.
Pseudostaurosira subconstricta (Grunow) Kulikovskiy & Genkal 2011, Fig. 2 (33–35)
Ref. Kulikovskiy et al., 2011 (p. 366), Kulikovskiy et al., 2016 (p. 102; pl. 11: 43–46), Lange-Bertalot et al., 2017 (p. 531; pl. 10: 37–41), Куликовский et al., 2011 (p. 366; pl. 374: 74–78)
The valve is broadly lanceolate to rhombic-lanceolate, with sub-rostrate to subcapitate ends. The valve face is flat or slightly undulate due to raised costae. The length is 17.8–18.1 μm and the width is 4.0–4.1 μm. The centre margins are strongly constricted. The axial area is widely lanceolate. Striae number 18–20 per 10 μm, are distinct and parallel to radiate in the central area to slightly radiate toward the valve ends, and extend onto the valve mantle.
Habitat: stream; Microhabitat: Epiphytic; Location: Tiri Village, Leh
Staurosira cf. tabellaria (W. Smith.) Leuduger-Fortmorel 1878, Fig. 2 (36–38)
Ref. Morales et al., 2015 (p. 458–460; pl. 459: 48–60), Rusanov et al., 2018 (p. 6; pl. 7: 44–58)
The valve is rhomboid to lanceolate with tapering ends terminating in broadly-rounded apices. The valve shape is rhomboid to elliptical with tapering ends, ending in narrow rounded apices. The length is 8.7–13.7 μm and the width is 5–8.1 μm. The central area is vacant. The axial area is linear. Striae number 12–14 per 10 μm and are parallel at the central portion and radiate near the apices.
Habitat: stream and river; Microhabitat: Epiphytic; Location: Naycho Resort, Hunder, Nubra Valley, Leh
Remarks: Our specimen resembles the species Staurosira tabellaria published in Rusanov et al. 2018, having striae (13–16 per 10 μm) parallel as in S. tabellaria, but in our specimen, striae density (9–13 per 10 μm) is slightly different. Therefore, for the moment we are not confirming our specimen as Staurosira tabellaria.
Ulnaria ulna (Nitzsch) Compère 2001, Fig. 2 (39–40)
Ref. Compère, 2001 (p. 97–101), Kheiri et al., 2018 (p. 359; pl. 365: 33), Kulikovskiy et al., 2016 (p. 110; pl. 15: 4–10), John, 2018 (p. 95; pl. 350: I–J)
The valve is narrowly linear and taper from the middle towards slightly sub-capitate ends, and rimoportula are present at both ends. The length is 140–145 μm and the width is 6–6.1 μm. The central area is rectangular and contains ghost striae and shortened marginal striae. The axial area is linear, narrow and expanded slightly near to the central area. Striae 10–11 per 10 μm, parallel throughout the valve and slightly radiate at the ends.
Habitat: river; Microhabitat: Epilithic; Location: Indus River, Leh
Anomoeoneis sphaerophora Pfitzer 1871, Fig. 2 (41, 42)
Ref. Pfitzer, 1871 (p. 77; pl 3: 10); Lange-Bertalot et al., 2017 (p. 107; pl. 68: 31); Kulikovskiy et al., 2016 (p. 224; pl. 123: 1–7); Schoeman & Archibald, 1988 (p. 226; pl 225: 23–24)
The valve is linear-elliptic or rhombic-lanceolate with subrostrate to capitate ends. The length is 59–60 μm, and the width is 15.6–16.2 μm. The central area is slightly asymmetrical reaching up to the valve margin on one side. The axial area is narrow and bordered by areolae on both sides. The raphe is linear and lateral, and the terminal and distal ends of the raphe curve towards one side. The Striae number 18–20 per 10 μm and are weakly radiate at the central and parallel at the ends. Puncta pattern is distinct.
Habitat: river; Microhabitat: Epilithic; Location: Indus River, Leh
Stauroneis separanda Lange-Bert. & Werum, Fig. 2 (43–45)
Ref. Werum, M. & Lange-Bertalot, H., 2004 (p. 180; pl.46: 1–12); Levkov et al., 2016a (p. 172; pl. 169: 48–68); Lange-Bertalot et al., 2017 (p. 567; pl. 59: 4–7)
The valve is rectangular, linear to linear-lanceolate with triundulate margins and abruptly protracted apices. The central undulation is distinctly wider. In larger specimens, the valves are slightly constricted in middle. The valve length is 13.3–14.3 μm, and the width is 3.6–3.7 μm. The central area is narrow with distinct stauros. The raphe is straight and filiform. Striae are 28–30 per 10 μm. Transverse striae are fine, and are parallel throughout. Areolae are barely visible in LM.
Habitat: stream; Microhabitat: Epiphytic; Location: Tiri Village, Leh
Brachysira cf. procera Lange-Bert. & Gerd Moser 1994, Fig. 2 (46–48)
Ref. Lange-Bertalot & Moser, 1994 (p. 55; pl. 7, 9: 8–18, 4–6), Lange-Bertalot et al., 2017 (p. 117; pl. 60: 12, 13)
The valve is lanceolate to rhombic-lanceolate with obtusely rounded apices. The length is 33.5–39.8 μm, and the width is 5.2–5.6 μm. The central area is circular to oval. The raphe is linear and narrow. The striae number 29–30 per 10 μm and are parallel near the central area and become convergent towards the ends.
Habitat: lake; Microhabitat: Epiphytic; Location: Tso Moriri Lake, Ladakh
Remarks: Brachysira procera originally described by Lange-Bertalot & Gerd Moser, 1994, resembles our specimen in nearly all characteristics that can be seen with LM. However, B. procera has a more rhombic outline, while our specimen is more elliptical. Therefore, for the moment we are not confirming Brachysira procera.
Caloneis falcifera Lange-Bert., Genkal & Vekhov 2004, Fig. 2 (49–51)
Ref. Lange-Bertalot et al., 2004 (p. 12; pl. 13: Fig. 1); Lange-Bertalot et al., 2017 (p. 122; pl. 69: Figs. 29, 30)
The valve is linear with broadly rounded apices. The length is 23–48.1 μm and the width is 5.6–8.7 μm. The central area is broad, with a rectangular fascia. The axial area is linear, and is narrow at the apices. The raphe is lateral and filiform, and the proximal ends of the raphe are unilaterally deflected to one side. Striae number 22–23 per 10 μm, and are slightly radiate to parallel throughout the valve.
Habitat: stream; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh
Craticula simplex (Krasske) Levkov 2016, Fig. 3 (52–55)
Ref. Levkov et al., 2016 (p. 136; pl. 17: 1–18, pl. 18: 1–20, pl. 19: 1–6)
The valve is linear-lanceolate to rhombic-lanceolate with shortly protracted, rostrate to sub-capitate apices. The valve length is 23.0–27.5 μm and the width is 5.5–6.0 μm. The central area is vacant or weakly developed. The axial area is narrow and linear. The raphe is straight and filiform. The proximal raphe endings are expanded into central pores and are slightly deflected. The striae number 18–19 per 10 μm and are parallel to slightly radiate in mid-valve, becoming convergent towards the apices.
Habitat: stream; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh and Puga Ladakh
Craticula sp. Fig. 3 (56–60)
The valve is linear-lanceolate with acute ends. The valve length is 36.0–47.5 μm and the width is 6.5–8 μm. The central area is small or weakly developed and is slightly wider than the axial area. The axial area is narrow and linear. The raphe is straight, and the proximal raphe endings are expanded. The striae number 19–20 per 10 μm, and the central striae are parallel to slightly radiate and convergent towards the ends.
Habitat: stream and river; Microhabitat: Epiphytic; Location: Puga, Ladakh and Shey-Chuchot Road, Indus River
Fallacia pygmaea (Kütz.) Stickle & D.G.Mann 1990, Fig. 3 (61, 62)
Ref. Round et al., 1990 (p. 668); Kulikovskiy et al., 2016 (p. 285; pl. 61: 35–37); Mirzahasanlou et al., 2018 (pl. 529; 32); Lange-Bertalot et al., 2017 (p. 262; pl. 47: 28–31)
The valve is elliptical with obtuse to broadly rounded apices. The length is 27.5–27.9 μm and the width is 10.2–10.6 μm. The central area is variable. The axial area is straight and narrow. The raphe is distinct, straight and filiform. The striae number 24–25 per 10 μm, and striae radiate throughout the valve. A lyre-shaped non-ornamented area is present on the valve surface. The areolae are not visible in LM.
Habitat: stream; Microhabitat: Epiphytic; Location: Tiri Village, Leh
Frustulia vulgaris (Thwaites) De Toni 1891, Fig. 3 (63–65)
Ref. Lange-Bertalot et al., 2017 (p. 284; pl. 62: 3–7)
The valve is linear-elliptical to linear-lanceolate, with apices broadly rounded or protracted. The length 50–55 μm, and the width is 9.3–9.4 μm. The central area is elongate and distinct. The raphe is well developed and lies between two siliceous ribs, and is linear and straight. The axial ribs are discontinuous and are interrupted in the central area by a central nodule. The striae number 28–30 per 10 μm, are parallel throughout the valve and are slightly or strongly convergent near the apices.
Habitat: stream; Microhabitat: Epiphytic; Location: Tiri Village, Leh
Navicula radiosa Kutz. 1844, Fig. 3 (66–68)
Ref. Kutzing, 1844 (p. 91; pl. 4: 23); Lange-Bertalot et al., 2017 (p. 401; pl. 36: 1–5); Kulikovskiy et al., 2016 (p. 335; pl. 47: 1–6); Lee, 2012 (p. 34; pl. 36: C)
The valves narrow-lanceolate, with acutely rounded apices. The length is 68.9–75.1 μm, and the width is 10.1–10.5 μm. The central area is rhombic, asymmetrical, and transversely widens to become elliptical. The axial area is very narrow. A central nodule appears to be thicker on one side. The raphe is straight and filiform, with the ends deflected onto the same side. The striae number 9–10 per 10 μm and strongly radiate, becoming convergent towards the poles. Lineolae are visible in the LM.
Habitat: river, lake; Microhabitat: Epilithic Epiphytic; Location: Indus River, Leh, Tso Moriri Lake, Ladakh and Hunder, Nubra Valley
Navicula tripunctata (O.F.Müll.) Bory 1822, Fig. 3 (69, 70)
Ref. Lange-Bertalot et al., 2017 (p. 409; pl. 36: 11–16); Kulikovskiy et al., 2016 (p. 339; pl. 49: 13–20); Lee, 2012 (p. 42; pl. 43: j, k)
The valve is linear-lanceolate, with rounded apices. The length is 48–64.3 μm, and the width is 8.1–9.3 μm. The central area is rectangular, almost reaching the margins of the valve, and has 2–3 irregular shortened striae. The axial area is narrow and distinct. The raphe is linear and straight. The striae number 10–12 per10 μm, and are slightly radiate towards the middle of the valve but are parallel towards the apices.
Habitat: stream; Microhabitat: Epilithic; Location: Indus River, Leh
Navicula cf. krammerae Fig. 3 (71–73)
Ref. Lange-Bertalot, H. & Metzeltin, D., 1996 (p. 79; pl. 80: 3–8,)
The valves is lanceolate with narrow, rostrate to subcapitate ends. The length is 31.2–36 μm, and the width is 6.8–7.0 μm. The central area is irregular, elliptical and widened. The axial area is narrow, linear, and widens slightly towards the central area. The raphe is lateral and filiform with comparatively narrowly spacing. The central area is strongly marked with pores. The striae number 12–14 per 10 μm and are radiate at the centre to weakly convergent at the poles. Lineolae are clearly visible in LM. The lineolae are 28–31 per 10 μm.
Habitat: river; Microhabitat: Epilithic and Epiphytic; Location: Stakna Bridge, Indus River
Navicula cf. libonensis, Fig. 3 (74–78)
Ref. Schoeman, 1970 (p. 342; pl. 3: 36–37), Lange-Bertalot et al., 2001 (p. 45; pl. 43: 7–14, Lange-Bertalot et al., 2017 (p. 396; pl. 30: 20–24)
The valve is narrow to broadly lanceolate with acutely rounded apices. The length is 22.5–32.0 μm, and the width is 5.4–5.6 μm. The central area is transversely elliptical or irregular-rectangular, and is often slightly asymmetrical. Axial area narrow and linear. The raphe is filiform to weakly lateral, and the proximal raphe ends are straight and slightly expanded. The striae number 12–13 per 10 μm and are radiate and slightly curved at the centre of the valve, becoming convergent towards the poles.
Habitat: pond and river; Microhabitat: Epiphytic and Epilithic; Location: Guphunks, Spituk, Leh and Indus River
Navicula cincta (Ehrenb.) Ralfs 1861, Fig. 3 (79–83)
Ref. Ralfs 1861 (p. 901; pl. 40) Lange-Bertalot et al., 2017 (p. 26; pl. 41: 1–29); John, 2018 (p. 238; pl. 572: C); Lange-Bertalot et al., 2017 (p. 385; pl. 33: 31–36)
The valve is narrow to broadly lanceolate with acutely narrow apices. The length is 19.5–32 μm, and the width is 4.3–6.2 μm. The central area is small with an irregular border. The axial area is narrow and linear. The raphe is filiform to weakly lateral. The proximal ends are slightly expanded and both distal raphe ends curve towards the second valve. The striae number 12–16 per 10 μm, are strongly radiate and are convergent at the ends.
Habitat: pond and stream; Microhabitat: Epiphytic; Location: Guphunks, Spituk, Leh and Pond
Navicula gregaria Donkin 1861, Fig. 3 (84–86)
Ref. Donkin, 1861 (p. 10; pl. 1: 10); Lange-Bertalot et al., 2017 (p. 396; pl. 40: 4–6); Foged, 1978 (p. 90; pl. 206: 9); Lange-Bertalot et al., 2001 (p. 11; pl. 94: 19–24)
The valve is lanceolate with weakly protracted acutely rounded apices. The length is 26.2–27 μm, and the width is 5.8–6.1 μm. The central area is variable, asymmetrical and bordered by short striae. The axial area is narrow and straight. The raphe is filiform to weakly lateral. The proximal ending is strongly deflected. Striae number 18–20 per 10 μm and are slightly radiate at the centre and parallel to convergent at the apices.
Habitat: stream and river; Microhabitat: Epilithic; Location: Gya Village and Puga, Ladakh
Navicula caterva Hohn & Hellerman 1963, Fig. 3 (87–89)
Ref. Lange-Bertalot et al., 2001 (p. 25; pl. 33: 1–10, pl. 70:1)
The valve is broadly lanceolate with shortly protracted, subrostrate ends. The length is 14.9–17.4 μm and the width is 4.8–6.2 μm. The central area is small and irregular. The axial area is linear and very narrow. The raphe is filiform and straight. Striae number 17–18 per 10 μm and are radiate and curved near the centre and convergent at the valve apices.
Habitat: stream, river; Microhabitat: Epilithic, Epiphytic; Location: Indus River, Leh, Shey-Chuchot Road
Navicula reinhardtii (Grunow) Grunow 1880, Fig. 4 (90–92)
Ref. Van Heurck, 1880 (pl. 7: 7), Lange-Bertalot et al., 2017 (p. 403; pl. 28: 9–11), Lee 2012 (p. 35, 36; pl. 36: E); Lange-Bertalot et al., 2001 (p. 63; pl. 3: 1–5)
The valve is broadly elliptical to lanceolate with broadly rounded ends. The length is 33.2–54.3 μm, the width is 14.5–15.0 μm. The axial area is narrow and the central area is transverse, formed by alternating short and long striae. The raphe is filiform; the raphe branches are nearly straight, and the proximal raphe ends are straight, small and bulbous. Striae number 8–9 per 10 μm and are wide and radiate and nearly parallel at the ends. Lineolae are easily visible in LM.
Habitat: Stream; Microhabitat: Epiphytic; Location: Chumathan Hot Springs, Ladakh
Pinnularia sp. 1 Fig. 4 (93, 94)
The valve is linear, margins triundulate with slightly sub-capitate apices. The length is 32.2–36.2 μm and the width is 5.6–5.8 μm. The central area is broad with transverse fascia. The axial area is narrow, widening towards the centre. The raphe is straight, and the terminal nodules are distinct. Striae number 18–20 per 10 μm and are radiate in the central area and convergent towards the apices.
Habitat: stream; Microhabitat: Epilithic; Location: Indus River, Leh
Remarks: This taxon morphologically resembles Pinnularia nodosoides Krasske (cf. Krasske, 1948, pl. 2: 10) but has a wider fascia and a coarser stria, radiate to convergent throughout the valve. This taxon needs a taxonomic enumeration in future.
Pinnularia globiceps W. Gregory 1856, Fig. 4 (95–97)
Ref. Krammer, 2000 (p. 97; pl. 75: 10–12); Kulikovskiy et al., 2016 (p. 298; pl. 78: 6)
The valve is linear, lanceolate with constricted and slightly capitate rounded ends. The length is 24.5–48.7 μm and the width is 7.5–11.0 μm. The central area is large, transverse and elongate. The axial area is narrow, with a width of approx.1/4 of the width of the valve, expanding broadly into the central area. The raphe is filiform with drop-shaped curved proximal ends. Striae number 10–14 per 10 μm and strongly radiate in the middle portion and converge at the ends.
Habitat: river; Microhabitat: Epilithic; Location: Chumthang, Leh
Pinnularia brebissonii (Kutz.) Rabenh. 1864, Fig. 4 (98–101)
Ref. Rabenhorst, 1864 (p. 222); Krammer et al., 2000 (p. 69; pl. 45: 1–17); Lange-Bertalot et al., 2017 (p. 481; pl. 72: 9–3); Hofmann et al., 2013 (p. 482; pl. 70: 9–13)
The valve is linear to elliptic, with parallel margins in larger specimens. The ends are broadly apiculate. The length is 25.6–31.2 μm and the width is 6.6–7 μm. The central area is broad with a rhombic fascia. The axial area narrows at the ends and is wider towards the central area. The raphe is weakly lateral and straight. The proximal raphe ends are distinctly inflated and laterally deflected. Terminal raphe fissures are deflected to the primary valve side and are shaped like question marks. Striae number 16–20 per 10 μm and are strongly radiate near the central area, are parallel in the middle and convergent near the apices. Lineolae are easily visible in LM.
Habitat: river, pond and stream; Microhabitat: Epilithic, Epiphytic; Location: Guphunks, Spituk Leh, Puga, Ladakh
Neidium sp. 1 Fig. 4 (102, 103)
The valve is broadly linear and rounded at the ends. The length is 32–38 μm and the width is 9.0–9.7 μm. The central area is small and transversely elliptical, and the proximal ends of the raphe curve in opposite directions. The axial area is filiform and narrow. Striae number 14–15 per 10 μm and are distinctly punctate, throughout the valve they are slightly radiate to parallel and are slightly convergent at the apices.
Habitat: stream; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh
Remarks: This taxon morphologically resembles Neidium distincte-punctatum Hustedt (cf. Liu et al., 2017, p. 24: 247–252), but the central area is transversely elliptical reaching up to the margin and the ends are slightly narrow, and the striae density differs from the aforementioned species.
Neidium bisulcatum var. subampliatum Krammer 1985, Fig. 4 (104, 105)
Ref. Lange-Bertalot et al., 2017 (p. 423; pl. 54:14)
The valve is broadly linear with broadly rounded ends. The length is 45.8–53 μm, and the width is 9.4–9.6 μm. The central area is transversely circular, and the ends of the raphe curve in opposite directions. The axial area is distinct. Striae number 18–20 per10 μm and are distinctly punctate, and are parallel to slightly radiate throughout the valve. Punctae are easily visible in LM, 20 in 10 μm.
Habitat: stream; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh
Sellaphora cf. auldreekie D. G. Mann & S. M. McDonald 2004, Fig. 4 (106–108)
Ref. Mann et al., 2004 (p. 477; pl. 4 m–o: 43–47)
The valve is linear, lanceolate, or elliptical with bluntly rounded apices. The length is 23.5–25.6 μm and the width is 6.8–7.5 μm. The central area has butterfly-shaped fascia that extend halfway to the valve. The axial area is narrow, linear and broadened at the centre. The raphe is filiform, straight or weakly undulate, with a dot-shaped central pore. Striae number 22–26 per 10 μm and are radiate, parallel towards the poles, and bilaterally delimited from the hyaline axial area by a more strongly defined line. Shortened striae flanking the central area can be alternately short or long.
Habitat: stream; Microhabitat: Epiphytic; Location: Chumthang Hot Springs, Ladakh and Mughalpura, Srinagar-Leh Highway
Sellaphora sp. 1 Fig. 4 (109–111)
The valve is broadly linear with parallel margins and rounded apices. The length is 28.2–31.2 μm and the width is 8.6–8.8 μm. The central area is orbicular. The axial area is narrow and is bordered on each side by a conopeum. The raphe is straight with slightly expanded proximal end. Striae number 14–16 per 10 μm and are curved radiate throughout the valve.
Habitat: pool and river; Microhabitat: Epiphytic and Epilithic; Location: Chumathang Hot Springs, Ladakh and Shey-Chuchot Road, Indus River.
Remarks: This taxon morphologically resembles Sellaphora laevissima (Kützing) D. G. Mann (cf. Mann et al., 2008 p. 15–78; 51) but differs in having a central area more rhombic in shape, with slightly radiate and curved striae.
Achnanthidium pyrenaicum (Hust.) H.Kobayasi 1997, Fig. 4 (112–116)
Ref. Kobayasi, 1997 (p. 148), Lange-Bertalot et al., 2017 (p. 89; pl. 23: 62–70); Monnier et al., 2007 (p. 145; pl. 148: 33–36); Potapova & Ponader, 2004 (p. 44; pl. 45: 72–80)
The valve is linear-elliptic, with rounded or slightly protracted apices. The raphe valve is concave; the axial area is linear-lanceolate. The length is 12.5–20.6 μm and the width is 4.1–4.2 μm. The Raphe is filiform and straight with proximal ends teardrop-shaped externally, and curved internally. Distal ends curved in same sides externally, and curved in opposite sides internally. The rapheless valve is convex with a narrow, linear axial area widening slightly in the central area of the valve. Striae number 20–22 per 10 μm and are parallel in both valves and slightly radiate near the apices.
Habitat: stream and river; Microhabitat: Epiphytic, Epibryophytic and Epilithic; Location: Chumathang Hot Springs, Ladakh; Naycho Resort, Hunder, Nubra Valley, Leh and Indus River, Leh
Achnanthidium saprophilum (H.Kobayasi & Mayama) Round & Bukhtiyarova 1996, Fig. 4 (117–120)
Ref. Round & Bukhtiyarova, 1996 (p. 349); Lange-Bertalot et al., 2017 (p. 90; pl. 24: 53–57); Kulikovskiy et al., 2016 (p. 228; pl. 35: 17–18); Hlúbiková, 2011 (p. 33; pl. 24: 118–147)
The valve is linear-elliptical, the ends are weakly drawn out and are broadly rounded. The length is 10.6–13.7 μm, and the width is 2.8–3.1 μm. The central area in the raphe valve is transversely broadened with fascia that do not reach the margin, whereas in the raphe-less valve it is absent or indistinct. The axial area is narrowly to more broadly lanceolate. Striae number 28–30 per 10 μm, and are weakly radiate towards the ends.
Habitat: stream, pool, lake and river; Microhabitat: Epiphytic, Epilithic; Location: Chumathang Hot Springs, Ladakh; Naycho Resort, Hunder; Nubra Valley, Leh; Tso Moriri Lake, Mathoo Road, Husainiya Chuchot Gongma
Gogorevia exilis (Kützing) Kulikovskiy & Kociolek 2020, Fig.4 (121–123)
Ref. Lange-Bertalot et al., 2017 (p. 84; pl. 23: 31–36); Taylor et al., 2014 (p. 45; pl. 45: 2–54); Kulikovskiy M. et al., 2020
The valve is elliptical to linear-elliptical with protracted rostrate apices. Both the raphe and the rapheless valve have a narrow and slightly sigmoid axial area; the raphe valve has fascia and the rapheless valve has a small, transapically rectangular, often asymmetric central area. The length is 17.4–19.5 μm, and the width is 6.7–7.4 μm. The raphe is straight but deflected to opposite sides near the apices. Striae number 18–20 per 10 μm and are slightly radiate on both valves, but are almost parallel at the apices.
Habitat: stream; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh
Remarks: This diatom species was exclusively found only in the Hot springs samples collected from Chumthang Hot Springs.
Cocconeis lineata Ehrenb. 1849, Fig. 4 (124–128)
Ref. Ehrenberg, 1849 (p. 301; pl. 5: 44); Lange-Bertalot et al., 2017 (p. 138; pl. 20: 8, 9); Kulikovskiy et al., 2016 (p. 246; pl. 31:1–9)
The valve is elliptic to linear-elliptic. The raphe valve has a narrow axial area and an elliptical to circular central area. The length is 21.2–25 μm and the width is 14.1–16.8 μm. The raphe is straight and filiform. The distal raphe ends are straight and expanded externally. The proximal raphe ends are straight externally and slightly expanded. Striae number 20–21 per 10 μm, are parallel and straight in the centre and radiate towards the apices. The areolae are visible under LM.
Habitat: stream, river; Microhabitat: Epiphytic, Epilithic; Location: Chumathang Hot Springs, Ladakh; Indus River, Leh; Shey-Chuchot Road, Indus River; Stakna Bridge, Indus River
Aneumastus minor Lange-Bert. 1993, Fig. 4 (129–131)
Ref. Lange-Bertalot et al., 1993 (p. 1–164, pl. 39; 8, pl. 40; 1–4); Lange-Bertalot et al., 2017 (p. 104; pl. 103: 6–10)
The valve is broadly lanceolate with rounded apices. The valve length is 15.6–26.2 μm, width 8.1–10.0 μm. The axial area is narrow and linear. The central area is small and irregular with 2–3 shortened striae on each side. The raphe is straight, with slightly enlarged proximal raphe ends. The striae are radiate, numbering 11–14 per 10 μm. The areolae in the central region are transversely elongate.
Habitat: river; Microhabitat: Epiphytic; Location: Hunder, Nubra Valley.
Psammothidium bioretii (H.Germ.) Bukhtiyarova & Round 1996, Fig. 5 (132–135)
Ref. Bukhtiyarova & Round 1996 (p. 9; 26–31); Lange-Bertalot et al., 2017 (p. 520; pl. 27: 14–18); Kulikovskiy et al. 2016 (p. 239; pl. 35: 35–39), Manoylov et al., 2007 (p. 318–320; pl. 319: 1–10)
The valve is broadly elliptical and both ends broadly rounded. The length is 10.2–20.6 μm and the width is 5.4–9.3 μm. The central area is transversely elliptical or rectangular with shortened striae. The axial area is narrow. The raphe is filiform and straight. The rapheless valve central area and axial area is narrow and rarely wider. Striae number 20–28 per 10 μm and are radiate throughout the valve.
Habitat: stream; Microhabitat: Epilithic and Epiphytic; Location: Tso Moriri Lake, Ladakh and Puga
Gomphonema minutum (C.Agardh) C.Agardh 1831, Fig. 5 (136–139)
Ref. Agardh, 1831 (p. 34); Lange-Bertalot et al., 2017 (p. 311; pl. 824: 28–32); Kociolek, J. P. & Kingston, J. C., 1999 (p. 698; 699: 78–90)
The valve is broadly wedge-shaped or club-shaped to lanceolate with a strongly narrowed foot pole and broadly rounded head pole. The length is 16.5–25.6 μm and the width is 4.8–5 μm. The central area is very small, and the axial area is narrow. The stigma present in the centre is large and distinct. The raphe weakly curved in larger specimens. Striae number 12–15 per 10 μm and are radiate throughout the valve.
Habitat: lake; Microhabitat: Epiphytic; Location: Tso Moriri Lake, Ladakh.
Gomphonema parvulum (Kutz.) Kutz. 1849, Fig. 5 (140–144)
Ref. Kutzing, 1849 (p. 65); Lange-Bertalot et al., 2017 (p. 315; pl. 830: 1–5); Kulikovskiy et al., 2016 (p. 213; pl. 128: 12–17); Levkov et al., 2016b (p. 98; pl. 348: 1–19)
The valve is lanceolate; the ends are rostrate to sub-capitate and slightly deflected. The length is 18–26.2 μm and the width is 5.6–6.4 μm. The central area is asymmetrical, with a single long stria on one side. One distinct stigma is present. The axial area is narrow and straight. The raphe is straight and slightly undulate with slightly expanded proximal ends, with a polar node visible at each pole before the apices, and an indistinct terminal impression. Striae number 12–16 per 10 μm. Striae are more or less parallel throughout the valve and are slightly radiate towards the foot pole; striae are more widely spaced at the centre of the valve. Areolae are not visible in LM.
Habitat: stream; Microhabitat: Epiphytic, Epilithic; Location: Chumathang Hot Springs, Ladakh; Indus River, Leh; Tiri Village, Puga, Shey-Chuchot Road.
Remarks: This diatom species was found mostly in hot springs samples collected near Chumathang.
Gomphonella cf. qii (Q. M. You & Kociolek) R. Jahn & N. Abarca 2019, Fig. 5 (145, 146)
Ref. You et al., 2013 (p. 6: 26–38)
The valve is weakly linear to elliptical-clavate and the ends are obtusely rounded. The length is 40.1–60.8 μm and the width is 7.5–11 μm. The central area is transversely rectangular and almost reaches the valve margins and has very short stria on each side. The axial area is narrow. The raphe branches are curved, but appear to be filiform. Striae number 7–10 per 10 μm and are radiate in the centre to parallel in the apices.
Habitat: river; Microhabitat: Epiphytic; Location: Hunder, Nubra Valley.
Remarks: Gomphonella qii originally described by You et al., 2013, p. 6: 26–38 from the Kunlun Mountains in the west of Xinjiang Province, China, have a sub-capitate head pole (You et al., 2013, p. 6: 26–30). In our specimen, the valve differs slightly, with a capitate head pole. Jüttner et al., 2018 (p. 289; 39–45) reported this species from Rara Lake, Nepal. Striae range from 12–14 per 10 μm, but a lower striae density of 7–10 per 10 μm was observed in our specimen. Therefore, for the moment we are not confirming our specimen as Gomphonella qii.
Gomphosinica hedinii (Hust.) Kociolek, Q.M.You, Q.X.Wang & Q.Liu 2015, Fig. 5 (147–151)
Ref. Kociolek et al., 2015 (p. 184 pl. 184: 47–54); Kulikovskiy et al., 2016 (p. 216; pl. 124: 62–65)
The valve is lanceolate-clavate with both ends capitate. The head pole is broader and more rostrate while the foot pole is narrow. The length is 30.7–36.8 μm and the width is 8.8–9.9 μm. The central area bears a single round stigma. The axial area is straight and narrow and expanded laterally with a stria of varying length on both sides, giving the impression of an X-shaped central area. The raphe is lateral and straight. Striae number 10–12 per 10 μm and are strongly radiate at the centre, parallel at both ends, and not clearly punctate. The apical pore fields are indistinct.
Habitat: stream, river; Microhabitat: Epilithic, Epiphytic; Location: Indus River, Leh; Chumathang, Puga, Ladakh
Gomphonella cf. olivacea (Hornem.) Rabenh. 1853, Fig. 5 (152–154)
Ref. Rabenhorst, L. (1853) (1853: 61, pl. IX [9]: Fig. 1); Jahn, 2019 (p. 231 pl. 266: A–H, M-P); Tuji, 2005 (p. 97; pl. 15: 1–15)
The valve is clavate with broadly rounded headpole and narrow towards the foot pole. The length is 18.1–25.1 μm and the width is 6.0–7.5 μm. The axial area is moderately narrow to broadly linear. The central area is variable, transversely broad but not reaching up to the margins. Stigma is absent. The raphe is filiform and slightly wider, almost straight. Striae number 10–12 per 10 μm and are radiate, becoming parallel and even very weakly convergent close to the head pole.
Remarks: Gomphonella olivacea was originally described by Rabenhorst, L. (1853) (1853: 61, pl. IX [9]: Fig. 1). Our specimen resembles this species with a slight difference in the central area (the central area expands to form a rectangular, bow-tie- to transversely elliptical shape). Therefore, for the moment we are not confirming our specimen as Gomphonella olivacea. The taxonomic study confirmation will be detailed in future.
Habitat: stream, pool; Microhabitat: Epiphytic, Epilithic; Location: Chumthang Hot Springs; Indus River, Leh; Tso Moriri Lake, Ladakh; Mathoo Road near Husainiya Chuchot Gongma, and Mughalpura, Srinagar-Leh Highway
Reimeria sinuata (W.Greg.) Kociolek and Stoermer 1987, Fig. 5 (155–157)
Ref. Kociolek and Stoermer, 1987 (p. 457; 1–10), Levkov & Ector, 2010 (p. 482; pl. 474: 34–40); John, 2018 (p. 168; pl 478: G–H); Lange-Bertalot et al., 2017 (p. 533; pl. 91: 50–56)
The valve is dorsiventral and narrowly lanceolate with convex ventral and dorsal margins. The ventral margin is slightly inflated mid-valve. The ends are broadly rounded to sub-capitate. The valve length is 10.3–22 μm and the width is 3–5 μm. The axial area is very narrow and linear. The central area is wider on the ventral side, extending up to the ventral margin, whereas on the dorsal side one short central stria and an isolated stigma is present. the raphe branches linearly and are filiform to slightly lateral. The proximal raphe endings are indistinct and slightly ventrally bent, while the distal raphe endings are ventrally curved. Striae number 10–14 per 10 μm and are subparallel or slightly radiate throughout the valve. Areolae not discernible with LM.
Habitat: stream, lake; Microhabitat: Epibryophytic, Epilithic, Epiphytic; Location: Naycho Resort, Hunder, Nubra Valley, Leh; Indus River, Leh; Tso Moriri Lake, Ladakh; Puga
Amphora ovalis (Kütz.) Kütz. 1844, Fig. 5 (158, 159)
Ref. Kützing, 1844 (p. 107; pl. 5: 35, 39); Levkov, 2009 (p. 96; pl. 322:1–6); Lange-Bertalot et al., 2017 (p. 101; pl. 92: 1–5); Kulikovskiy et al., 2016 (p. 286; pl. 38: 1–10)
The valve is semi-elliptical with a smoothly arched dorsal margin and a straight or slightly concave ventral margin. The valve ends are obtusely rounded. The valve length is 40.0–59.0 μm and the width is 8.7–12.0 μm. The central area is interrupted by intercostal ribs on the dorsal side. Therefore, dorsal fascia are absent, but ventral fascia are present and extend to the valve margin. The axial area is narrow and curved. The raphe branches are double-curved at both ends displaced dorsally. Striae number 10–12 per 10 μm, are radiate throughout, and coarsely punctate. The central striae are dash-shaped and not punctate.
Habitat: stream; Microhabitat: Epilithic; Location: Indus River, Leh
Amphora copulata (Kütz.) Schoeman & R. E. M. Archibald 1986, Fig. 5 (160, 161)
Ref. Schoeman & Archibald, 1986 (p. 429; 11–13, 30–34), Lange-Bertalot et al., 2017 (p. 98; pl. 93: 4–8); John, 2018 (p. 258; pl. 601: H–F), Levkov, 2009 (p. 49: pl. 47: 10–16)
The valve is semi-lanceolate to semi-elliptical with smoothly arched dorsal margin and a concave ventral margin. The length is 27.5–31.2 μm and the width is 6.8–7.5 μm. The axial area is narrow. The proximal raphe ends are dorsally inclined and the distal raphe ends are curved towards the dorsal side. Dorsal and ventral fascia are present. Striae number 12–14 per 10 μm, and the dorsal striae are almost parallel in the middle and radiate slightly towards the apices. The ventral striae radiate in the middle and are convergent towards the ends.
Habitat: pool, stream, river; Microhabitat: Epiphytic, Epilithic; Location: Chumathang Hot Springs Ladakh; Indus River, Leh; Shey-Chuchot Road.
Cymbella nepalensis (Jüttner & Van de Vijver) Vishnjakov 2015, Fig. 5 (162–164)
Ref. Vishnjakov et al., 2015 (p. 326; pl. 329: f–j); Kulikovskiy et al., 2016 (p. 171; pl. 89: 5–11)
The valve is broad, cymbelloid and semi-elliptical. The apices are bluntly rounded and weakly protracted. The dorsal margin is strongly arched, and the ventral margin is slightly convex to nearly flat. The valve length is 45.1–63.8 μm and the width is 14–19 μm. The central area is oval or slightly rhombic. 2–5 ventral stigma and usually 4 stigmata are seen. The axial area is linear and wider than the raphe. The ends of the large valves are not protected but are truncated and widely rounded. Small valves have more or less clearly protracted ends. Striae number 8–10 per 10 μm, and the ventral striae are weakly radial. Areolae are distinct in LM.
Remarks: Previously, this species was known from Nepal and from the rivers Selenga, Olkha, Onot, Zun-Muren & Malie Tibeliti and Lake Baikal. This study marks that first time it has been reported in India.
Habitat: stream; Microhabitat: Epiphytic, Epilithic; Location: Chumthang Hot Springs, Ladakh; Indus River, Leh, Gya Village
Cymbella lange-bertalotii Krammer 2002, Fig. 5 (165, 166)
Ref. Krammer, 2002 (p. 152, 174; pl. 179: 1–6, pl. 180; 1–8. pl. 181: 1–6, 8; pl. 182: 1–9), Kulikovskiy et al. 2016 (p. 170; pl. 99: 8–11), Barinova et al. 2014 (p. 25; pl. 26: 8).
The valve is slightly dorsiventral, whereas the dorsal margin is more strongly convex than the ventral margin and is weakly inflated at the centre. The ends are obtusely rounded and slightly protracted. The length is 52.5–53.7 μm, and the width is 12–13.5 μm. The central area is indistinct. The axial area is narrow to moderately broad. 4 small stigmata are present, slightly separated from the ventral striae. The raphe is on the median axis of the valve, and is slightly displaced ventrally. Striae number 8–10 per 10 μm and are weakly radiate, becoming parallel at the ends.
Habitat: pool, river; Microhabitat: Epiphytic; Location: Chumthang Hot Springs, Ladakh
Cymbella alpestris Krammer 2002, Fig. 5 (167–170)
Ref. Krammer, 2002 (p. 52, 63; pl. 33: 1–13, pl. 34: 1–7), Bahls and Luna, 2018 (Figs. 19–21)
The valve is asymmetrical to the apical axis. The dorsal margin is strongly convex; the ventral margin is slightly concave, with slightly median inflation. The apices are broadly rounded. The length is 35.5–56.8 μm and the width is 10–12.1 μm. The central area is not distinctly differentiated from the axial area; the axial area is narrow. The strongly lateral raphe becomes filiform near the distal ends and reverse-lateral near the proximal ends. There are no isolated stigmata in the centre. Striae number 8–9 per 10 μm and are radiate throughout the valve.
Habitat: lake, river; Microhabitat: Epiphytic, Epilithic; Location: Tso Kar Lake, Leh; Hunder, Nubra Valley; Shey-Chuchot Road, Indus River; Mathoo Road near Husainiya Chuchot Gongma; Stakna Bridge
Encyonema silesiacum (Bleisch) D.G.Mann 1990, Fig. 5 (171–173)
Ref. Round et al., 1990 (p. 667); Krammer, 1997a. (p. 75; pl. 4: 1–18, pl. 7: 1, 2, 6–19), Kulikovskiy et al., 2016 (p. 188; pl. 109: 1–5)
The valve is strongly dorsiventral and semi-lanceolate. The dorsal margin is strongly convex. The ventral margin is weakly concave. The ends are narrower to more widely rounded, and are not protracted. The length is 35.1–53.7 μm and the width is 11.2–12.5 μm. The axial area is narrow and is strongly displaced ventrally. The central area is vacant, with 1–2 stigma.
The raphe is filiform with dorsally curved central ends. Striae number 9–11 per 10 μm, are slightly radiate and converge clearly only ventrally near the ends.
Habitat: stream, river; Microhabitat: Epilithic; Location: Gya Village; Stakna Bridge, Indus River
Encyonema ventricosum (C.Agardh) Grunow 1875, Fig. 6 (174–178)
Ref. Lange-Bertalot et al., 2017 (p. 209; pl. 89: 18–22). Kulikovskiy et al., 2016 (p. 188; pl. 110: 1–5)
The valve is strongly dorsiventral and semi-lanceolate; the dorsal margin is strongly convex, and the ventral margin is weakly concave with an inflated centre. The length is 21–25 μm and the width is 6.8–7.5 μm. The ends are short, capitate and inclined ventrally. The central area is vacant, and the axial area is narrow and linear. The raphe is filiform with dorsally curved central ends; terminal fissures are turned ventrally. Distinct isolated stigma is present in the central area. Striae number 14–15 per 10 μm and radiate throughout the valve.
Habitat: stream; Microhabitat: Epilithic, Epiphytic; Location: Indus River, Leh; Tiri Village; Tso Moriri Lake, Ladakh; Mughalpura, Srinagar-Leh Highway
Encyonopsis cesatii (Rabenh.) Krammer 1997, Fig. 6 (179–181)
Ref. Krammer, 1997 (p. 156, 152; pl. 182: 1–13, pl. 183: 10–12); Lange-Bertalot et al., 2017 (p. 211; pl. 91: 1–17); Kulikovskiy et al., 2016 (p. 193; pl. 111: 15–20)
The valve is slightly dorsiventral, lanceolate. Dorsal and ventral margin moderately convex. Ends narrow and subrostrate. The length is 46.2–66.8 μm and the width is 6.0–8.1 μm. The central area is vacant or with hints of shortened striae. The axial area is linear and very narrow. The raphe is slightly undulate, the central ends turn dorsal, and the terminal fissures are comma-shaped and are curved towards the ventral side. Striae number 16–20 per 10 μm and are slightly parallel and radiate.
Habitat: river; Microhabitat: Epiphytic; Location: Hunder, Nubra Valley
Encyonopsis microcephala (Grunow) Krammer 1997, Fig. 6 (182, 183)
Ref. Krammer, 1997 (p. 91; pl. 143: 1, 4, 5, 8–26; pl. 146: 1–5); Lange-Bertalot et al., 2017 (p. 213; pl. 91: 35–17); Kulikovskiy et al., 2016 (p. 194; pl. 111: 38–40)
The valve is symmetrical to weakly dorsiventral, linear to linear-elliptical. The ends are narrowly capitate. The length is 14.3–18.7 μm and the width is 3.1–4.3 μm. The central area is variable, shortened by the central striae. The axial area is very narrow and linear without expansion towards the centre. The raphe is filiform. Striae number 22–26 per 10 μm and are weakly radiate throughout the valve.
Habitat: lake; Microhabitat: Epiphytic, Epilithic; Location: Tso Moriri Lake, Ladakh; Shey-Chuchot Road, Indus River; Husainiya Chuchot Gongma; Stakna Bridge, Indus River
Epithemia turgida (Ehrenb.) Kutz.1844, Fig. 6 (184–186)
Ref. Kutzing, 1844 (p. 34; pl. 5: 14); Vishnyakov et al., 2014 (p. 326; pl. 325: f–I); Lange-Bertalot et al., 2017 (p. 221; pl. 122: 1–4); Karthick et al., 2013 (p. 105; pl. 105: 1–5)
The valve is dorsiventral, tapering towards the ends. The ends are rounded to slightly capitate. The dorsal margin is strongly convex and the ventral margin is slightly concave. The length is 55–65 μm and the width is 9.9–12.1 μm. The raphe canal abuts the ventral margin at the distal ends of the valve and arches towards the dorsal margin in the valve centre. Striae number 10–12 per 10 μm and the costae are mostly 4 per 10 μm.
Habitat: river; Microhabitat: Epilithic and Epiphytic; Location: Indus River, Leh and Shey-Chuchot Road, Indus River
Epithemia proboscidea Kütz. 1844, Fig. 6 (187–189)
Ref. Kützing, 1844 (p. 35; pl. 5: 13); Vishnyakov et al., 2014 (p. 321; 6)
The valve is linear with a convex dorsal margin and a weakly concave ventral margin. The apices are narrow and truncate to capitate. The length is 50.6–65 μm, and the width is 9.8–11.2 μm. Raphe runs almost straight atop or closely above the ventral edge, dorsally in the centre, however without reaching the median line of the valve. Striae number 12–14 per 10 μm. The costae number 4 per 10 μm and are parallel to slightly radiate and are often irregularly arranged.
Habitat: river, Microhabitat: Epilithic; Location: Indus River, Leh
Epithemia sorex Kütz. 1844, Fig. 6 (190–192)
Ref. Kützing, 1844 (p. 33; pl. 5: a–c); Lange-Bertalot et al., 2017 (p. 220; pl. 123: 1–7); Karthick et al., 2013 (p. 104; pl. 104: 5); Patrick & Reimer, 1975 (p. 188; pl. 27: 4)
The valve is strongly to moderately-dorsiventral. The dorsal margin is usually strongly convex, and the ventral margin is moderately concave. The ends are more or less differentiated and capitate. The length is 35.2–35.6 μm and the width is 6.7–6.8 μm. The raphe is strongly curved, rising dorsally almost near the valve margin in the centre and reaching the apex of the drawn-out ends. Costae number 4 per 10 μm and striae number 12–14 per 10 μm and are radiate throughout the valve.
Habitat: river; Microhabitat: Epilithic and Epiphytic; Location: Indus River, Leh and Stakna Bridge
Rhopalodia gibberula (Ehrenb.) O.Müll. 1895, Fig. 6 (193, 194)
Ref. Müller, 1895 (p. 58; pl. 2), John, 2016 (p. 147; pl. 340: H, I)
The valve is strongly dorsiventral and is claw-like in shape. The dorsal margin is strongly convex with a slight but noticeable indentation in the middle. The ventral margin is more or less straight. The apices are bent ventrally, sometime slightly protracted and rounded ventrally deflected. The length is 41.2–43.1 μm and the width is 6–7.5 μm. The raphe canal follows the dorsal margin. The raphe is supported by fibulae. Striae number 14–16 per 10 μm, and the fibulae number 3–4 per 10 μm.
Habitat: lake; Microhabitat: Epiphytic; Location: Tso Kar Lake.
Denticula valida (Pedicino) Grunow 1885, Fig. 6 (195–198)
Ref. Van Heurck, 1885 (pl. 49: 5), Hamsher et al., 2014 (p. 353; pl. 354: A)
The valve is lanceolate to linear with convex to parallel sides with the raphe side often having a slight constriction and rounded acute apices. The length is 30–43 μm and the width is 6–7.1 μm. Striae are parallel in the centre to slightly convergent at the apices, but are evenly spaced throughout the valve. Striae number 20–22 per 10 μm. The canal raphe is eccentric with no obvious keel; fibulae number 3–4 per 10 μm, extending across the transapical axis.
Habitat: stream and pool; Microhabitat: Epiphytic; Location: Chumthang Hot Springs, Ladakh
Denticula thermaloides Van de Vijver & Cocquyt 2009, Fig. 6 (199–202)
Ref. Van de Vijver & Cocquyt, 2009 (p. 217–219; 56–74).
The valve is linear to lanceolate with convex to parallel margins and acutely rounded apices. The valve length is 42.0–75.0 μm and the width is 8.6–9 μm. The raphe is strongly displaced towards the margin. Fibulae number 3–4 per 10 μm, are fairly broad and parallel, extending across the transapical axis throughout the valve. A large, double-topped hump is present in the centre of each costa, covering almost half of the costa. The Striae are parallel and evenly spaced throughout the valve. Striae number 12–16 per 10 μm. The canal raphe is eccentric. Puncta are not visible in LM.
Habitat: stream and pool; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh
Nitzschia commutata Grunow 1880, Fig. 7 (203–205)
Ref. Witkowski et al., 2000 (p. 375; pl. 195: 3–5); Stenger-Kovács and Lengyel, 2015 (p. 120; pl. 56: 1–15)
The valve is slightly arcuate with one margin slightly convex and the other slightly concave. The concave margin recurves near the apices to form capitate apices. The length is 47.1–82.1 μm and the width is 6.1–7.6 μm. Striae number 16–22 per 10 μm, are almost parallel in the centre and converge near the apices. Fibulae number 7–8 per 10 μm, and those in the central part are more spaced than the others.
Habitat: stream and river; Microhabitat: Epiphytic and Epilithic; Location: Chumathang Hot Springs, Ladakh, and Husainiya Chuchot Gongma
Nitzschia palea (Kutz.) W. Sm. 1856, Fig. 7 (206–208)
Ref. Smith, 1856 (p. 89), Bey & Ector, 2013 (p. 1064; pl. 1065: 1–33), Bishop et al., 2017 (pl. 138: 27–30); Ivanov et al., 2006. (pl. 181: 5–7)
The valve is linear-lanceolate to lanceolate with rostrate to sub-capitate apices; the margins are parallel in the centre. The length is 37.8–49.4 μm and the width is 3.8–4.1 μm. The transapical striae are very delicate and difficult to resolve with LM. Fibulae number 11–12 per 10 μm, and the central ones are equidistantly spaced.
Habitat: pool, pond, river, stream; Microhabitat: Epiphytic, Epilithic; Location: Chumathang Hot Springs, Ladakh; Guphunks Spituk, Leh; Indus River; Tiri Village; Stakna Bridge
Nitzschia denticula Grunow 1880, Fig. 7 (209–212)
Ref. Cleve & Grunow, 1880 (p. 82); Lange-Bertalot et al., 2017 (p. 440; pl. 119: 26–31); Kulikovskiy et al., 2016 (p. 401; pl. 145: 22–25), Tuji, 2016 (pl. 21, 22: 1–6)
The valve is lanceolate, with acutely rounded apices. The length is 16.7–26.6 μm and the width is 4.5–5.5 μm. Striae number 18–19 per 10 μm and are distinctly punctate and parallel. Fibulae number 6–7 per 10 μm and continue in transapical partitions throughout the valve.
Habitat: stream, pool and lake; Microhabitat: Epiphytic, Epipsamic; Location: Chumathang Hot Springs, Ladakh; Tso Moriri Lake; Shey-Chuchot Road, Indus River
Nitzschia pusilla Grunow 1862, Fig. 7 (213–216)
Ref. Grunow, 1862 (p. 579; pl. 28: 11); Lange-Bertalot et al., 2017 (p. 454; pl. 114: 10–15), Trobajo et al., 2011 (p. 85; pl. 85: 6); Bey & Ector, 2013 (p. 1072; pl. 1073: 1–28)
The valve is linear-lanceolate to linear, often elliptical. The ends are obtusely to broadly rounded, and are weakly drawn out in large specimens. The length is 19.3–31.3 μm and the width is 3.7–4 μm. Striae are not visible in LM. Fibulae number 11–13 per 10 μm, and the central ones are equidistantly spaced.
Habitat: pond; Microhabitat: Epiphytic; Location: Guphuks, Spituk, Leh.
Nitzschia hantzschiana Rabenhorst 1860, Fig. 7 (217–221)
Ref. Lange-Bertalot et al., 2017 (p. 446; pl. 114: 55–59)
The valve is linear to lanceolate with gentle tapering to a pointed or obtusely rounded end. The length is 19.3–35.4 μm and the width is 3.3–3.7 μm. Fibulae number 10–12 per 10 μm and are distinct and equidistant. Striae number 22–24 per 10 μm, are coarse, and appear distinctly punctate with LM.
Habitat: stream, pond; Microhabitat: Epiphytic and Epipsamic; Location: Chumthang Hot Springs, Ladakh; Guphunks, Spituk, Leh; Shey-Chuchot Road, Indus River
Remarks: This species is very similar to N. valdecostata in valve outline, but differs in number of striae and fibulae.
Nitzschia puriformis Hlúbiková & Ector 2009, Fig. 7 (222–224)
Ref. Hlúbiková et al., 2009 (p. 751: a–p)
The valve shape is lanceolate with concave valve margins that can be briefly parallel in the largest specimens. The valve apices are slightly protracted sub-capitate to capitate. The length is 36.8–53.2 μm and the width is 4.9–5.7 μm. The raphe is positioned on a distinct raphe keel, continuous from pole to pole. Striae are not visible in LM. Fibulae number 12–14 per 10 μm.
Habitat: stream and river; Microhabitat: Epilithic and Epiphytic; Location: Tso Moriri Lake, Ladakh; Stakna Bridge, Indus River
Nitzschia paleaeformis Hustedt 1950, Fig. 7 (225–227)
Ref. Lange-Bertalot et al., 2017 (p. 453: pl. 113: 48–51)
The valve is linear to linear-lanceolate. The ends are tapered, sub-capitate. The length is 59.0–65.6 μm and the width is 3.4–4.1 μm. Striae are not visible in LM. Fibulae number 10–14 per 10 μm.
Habitat: pond, river, stream; Microhabitat: Epiphytic, Epilithic, Epipsammic; Location: Chumathang Hot Springs, Ladakh
Tryblionella hungarica (Grunow) Freng. 1942, Fig. 7 (228–230)
Ref. Frenguelli, 1942 (p. 178; pl. 8: 12); Lange-Bertalot et al., 2017 (p. 598; pl. 106: 3–7); Bertolli et al. 2020 (p. 6; pl. 5: d–f); Abdel-Aal & Mofeed , 2015 (pl. 42; 1)
The valve is linear, cuneate at the poles, slightly concave in the middle. The apices are rostrate and weakly protracted. The length is 52.4–68.6 μm and the width is 7–7.5 μm. Striae number 17–18 per 10 μm. The impression of a hyaline area is created by a depression on the valve surface.
Habitat: stream, pool; Microhabitat: Epiphytic, Epilithic; Location: Chumathang Hot Springs, Ladakh; Tiri Village, Leh; Husainiya Chuchot Gongma.
Cymatopleura apiculata W.Sm. 1853, Fig. 7 (231–233)
Ref. Smith, 1853 (p. 37; pl. 10: 79); Kulikovskiy, M. et al., 2016 (p. 412; pl. 155: 2–4); Lange-Bertalot et al., 2017 (p. 154; pl. 127: 1–4); Lange-Bertalot & Krammer, 1987 (pl. 50: 2–3)
The valve is broadly linear with a central slight constriction and tapering to blunt ends. The length is 64.3–95.0 μm and the width is 14.0–19.0 μm. A canal raphe runs around the valve margin. Fibulae number 7–9 per 10 μm. The undulations of the valve face are transapical corrugations and occur throughout the valve.
Habitat: pool; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh.
Surirella angusta Kütz. 1844, Fig. 7 (234–236)
Ref. Kützing, 1844 (p. 61; pl. 30: 52), Lange-Bertalot et al., 2017 (p. 582; pl. 133; 1–5); Kulikovskiy et al., 2016 (p. 414; pl. 164: 8–11); John, 2016 (p. 150; pl. 349: c)
The valve is linear, isobilateral and isopolar with cuneate apices. The length is 24.1–38.7 μm and the width is 7.2–8.1 μm. The central area is narrow and linear. Alar canals (marginal costae) number 7–8 per 10 μm, are parallel, and radiate towards the apices. The valve surface is finely striated.
Habitat: river, stream; Microhabitat: Epilithic, Epiphytic; Location: Indus River, Leh; Tiri Village, Leh, Stakna Bridge
Surirella brebissonii Krammer & Lange-Bert. 1987, Fig. 7 (237–239)
Ref. Krammer, K., & Lange-Bertalot, H., 1987 (p. 82; pl. 84: 21–33); Lange-Bertalot et al., 2017 (p. 583; pl. 132: 11–21)
The larger of the valves are linear-ovate, whereas the smaller valves are ovate, and smallest valve is broadly elliptical to nearly round. The length is 15.6–25 μm and the width is 12–15.1 μm. In large forms, one end is rounded in cuneate fashion and the other is broadly rounded. In smaller forms, both ends are almost equally rounded. Striae density is 18–24 per 10 μm and costa are 6–7 per 10 μm.
Habitat: pool; Microhabitat: Epiphytic; Location: Chumathang Hot Springs, Ladakh
4.Discussion
The present study is a preliminary investigation of the diatom assemblages from high-altitude water bodies and hot springs in Ladakh. This paper represents the commonly occurring diatom taxa that are observed in this region. Due to the lack of physiochemical parameters gathered at the time of collection, we predict the characteristics of the localities based on the autecology of the diatoms that are predominant in the samples.
Ladakh is a biome that offer a wide range of pristine environmental conditions, including glacial deposits, arid regions, dune fields, hot springs and saline lakes (Pandey et al. 2020). With such extremes at high altitudes, the diatom biodiversity is significantly high yet is not very well-studied. In the past, few studies were conducted on the diatoms of selected lakes and rivers in Ladakh and its adjoining region (Compère 1983, Kant & Gupta 1998, Kumar et al. 2012, and Phartiyal et al. 2020). The earliest record of diatoms from the high elevations of the Eastern Himalayas at altitudes of 2900–4200 amsl reported 51 species of diatoms. Among these, 30 taxa were new reports from India (Suxena et al. 1972). Over the years, with advancements in microscopic technology, researchers have expanded their explorations to investigate diatoms inhabiting rare habitats, including mountain lakes. Notably, the identification of diatom species has advanced to incorporate the use of electron microscopy. Recently, three lakes from high-altitude were studied for diatom diversity in the lake’s littoral area, where diatom assemblages were compared along the seasonal variations and different benthic substrata (Jüttner et al. 2021). The diatoms in high mountain streams of the Alps and the Himalayas are reported to be abundant at an altitude of 4,697 amsl (Cantonati et al. 2001). Hausburg Tarn, a glacial lake on Mount Kenya, reported 57 specific and infraspecific taxa, with Achnanthidium minutissimum and A. affine as the most abundant taxa (Cocquyt 2007). The present investigation shows the dominance of Reimeria sinuata (Gregory) Kociolek & Stoermer 1987, revealing the affinity of this taxon for high-altitude.
The commonly-occurring diatom species across samples from various sites in Ladakh are Fragilaria vaucheriae, Gomphonella cf. olivacea, Reimeria sinuata, Encyonema ventricosum, and Lindavia biswashanti. In comparison, the hot springs of Ladakh represent similar diatom assemblages as observed in hot springs from various parts of the world. The significant diatoms recorded from the hot springs of Ladakh are Surirella brebissonii, Rhopalodia gibberula, Navicula cincta, Navicula radiosa, Anomoeoneis sphaerophora, Gogorevia exilis. A similar assemblage including the taxa Gogorevia exilis, Amphora ovalis, Anomoeoneis sphaerophora, Gomphonema parvulum, Nitzschia palea, Rhopalodia gibberula, and Ulnaria ulna was recorded from the hot springs of northern Thailand (Nikulina & Kociolek 2011, Pumas et al. 2018). Also, Ladakh Hot springs diatoms show 15 typical diatoms reported in the geothermal diatoms from Altiplano, Chile (Angel et al. 2018), namely, Gogorevia exilis, Denticula thermaloides, Denticula valida, Encyonopsis microcephala, Fragilaria vaucheriae, Gomphonema parvulum, Navicula cincta, Navicula gregaria, Navicula tripunctata, Nitzschia palea, Nitzschia pusilla, Pseudostaurosira brevistriata, Surirella angusta, Tryblionella hungarica and Ulnaria ulna. Furthermore, occurrence of Nitzschia palea across the five sampling sites may indicate elevated nutrients levels, likely attributable to some kind of human impact on these sites, and further observation combined with water chemistry measurements is required to ascertain the anthropogenic effects (Van Dam et al. 1994, Watanabe et al. 2005).
The species Gogorevia exilis is known to be dominant in high-altitude warm hydrothermal ponds (thermals) in a tectonically active region (Cabrol et al. 2016). Also, Gogorevia exilis was predominant in the Hot springs of Oyasukyo Gorge, Japan, and in Hot springs in Northern Thailand (Watanabe et al. 2011, Pumas et al. 2018). Correspondingly, hot springs in Ladakh also showed a high occurrence of Gogorevia exilis. Denticula thermaloides Van de Vijver & Cocquyt was recorded in the high temperature (80°C) waters of the La Calera Hot Springs, Peru Likewise, the current study recorded the presence of Denticula thermaloides Van de Vijver & Cocquyt at 80°C. Consequently, the diatom assemblages analyzed in this study also depict the diatom populations found in high-altitude environments and hot springs habitats.
5.Conclusion
The study of diatom diversity from one of the highest mountain ranges in the Western Himalayas – Ladakh resulted in the identification of 74 diatom taxa. This study has documented the taxonomy, characteristics, and biodiversity of the commonly-occurring diatoms in the high-altitude rivers, streams, lakes, and hot springs of the Ladakh region. Focusing these different habitats in this region, we concluded that the common species of high-altitude hot springs habitats were Gogorevia exilis and Denticula thermaloides, whereas the other most-commonly occurring species in stream, river and lake habitat were Reimeria sinuata, Fragilaria vaucheriae, Gomphonella cf. olivacea, Encyonema ventricosum, Lindavia biswashanti, Diatoma moniliformis, and Denticula valida. Although the present report focuses only on the most-commonly-occurring diatom taxa, the entire flora will be presented in upcoming publications.
Acknowledgements
The authors are grateful to Prof Raymond Duraiswami, Department of Geology, Savitribai Phule Pune University, Pune, and Dr Aravind Madhyastha, Fellow at Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore, for helping with the collection of samples. This project is funded by the institute intramural grant (BD-07) to study the diatoms of the Indian subcontinent and establish the diatom collection at ARI, Pune. The authors would like to thank the Director, Agharkar Research Institute, for support and infrastructure facility. We are also thankful to the members of D3 Lab for their constructive comments on the previous versions of this manuscript. We appreciate Dr Danijela Vidaković, and an anonymous reviewer for helping to improve the quality of the manuscript with their detailed review and suggestions.
ReferencesAbdel-Aal, E., & Mofeed, J. (2015). Optimization of Medium Components for High Biomass and Lipid Production of the Freshwater Diatom Tryblionella Hungarica Niof-Dm-017 by using Plackett-Burman Design. The Egyptian Journal of Experimental Biology (Botany), 11(1), 41–50. Abdel-Aal E. Mofeed J. (2015). Optimization of Medium Components for High Biomass and Lipid Production of the Freshwater Diatom Tryblionella Hungarica Niof-Dm-017 by using Plackett-Burman Design. The Egyptian Journal of Experimental Biology (Botany), 11 (1), 41–50.
Agardh, C. A. (1831). Conspectus criticus diatomacearum. Lundae (Lund). Literis Berlingianus. Part, 3, 33–48. Agardh C. A. (1831). Conspectus criticus diatomacearum. Lundae (Lund). Literis Berlingianus. Part, 3, 33–48.
Angel, A., Vila, I., Díaz, C., Molina, X., & Sepúlveda, P. (2018). Geothermal Diatoms: Seasonal Variability in the El Tatio Geothermal Field (Altiplano, Chile). Advances in Microbiology, 8, 211–234. https://doi.org/10.4236/aim.2018.83015 Angel A. Vila I. Díaz C. Molina X. Sepúlveda P. (2018). Geothermal Diatoms: Seasonal Variability in the El Tatio Geothermal Field (Altiplano, Chile). Advances in Microbiology, 8, 211–234. https://doi.org/10.4236/aim.2018.83015
Ansari, A. H., Sharma, M., Ahmad, S., Singh, V. K., Pandey, S. K., & Kumar, Y. (2020). The glucose uptake rate of microorganism living in hot-springs above 70°C temperature: A study of Panamik and Puga hot-springs of Ladakh region, Jammu and Kashmir, India. Current Science, 118 (4), 644–648. https://doi.org/10.18520/cs/v118/i4/644-648 Ansari A. H. Sharma M. Ahmad S. Singh V. K. Pandey S. K. Kumar Y. (2020). The glucose uptake rate of microorganism living in hot-springs above 70°C temperature: A study of Panamik and Puga hot-springs of Ladakh region, Jammu and Kashmir, India. Current Science, 118 (4), 644–648. https://doi.org/10.18520/cs/v118/i4/644-648
Bahls, L., & Luna, T. (2018). Diatoms from Wrangell-St. Elias National Park, Alaska, USA. PhytoKeys, 113, 33–57. https://doi.org/10.3897/phytokeys.113.29456 PMID:30574010 Bahls L. Luna T. (2018). Diatoms from Wrangell-St. Elias National Park, Alaska, USA. PhytoKeys, 113, 33–57. https://doi.org/10.3897/phytokeys.113.29456 PMID: 30574010
Barinova, S., Solak, C. N., Erdoğan, O., & Romanov, R. (2014). Algae and zooplankton in ecological assessment of the Işikli Lake, Turkey. Aquatic Biology Research., 2(2), 23–35. https://doi.org/10.12966/abr.05.02.2014 Barinova S. Solak C. N. Erdoğan O. Romanov R. (2014). Algae and zooplankton in ecological assessment of the Işikli Lake, Turkey. Aquatic Biology Research., 2 (2), 23–35. https://doi.org/10.12966/abr.05.02.2014
Bertolli, L. M., Talgatti, D. M., Nascimento, T. M. D. S., & Torgan, L. C. (2020). The genus Tryblionella W. Smith (Bacillariaceae, Bacillariophyta) in southern Brazil salt marshes. Biota Neotropica, 20 (1), e20190774. https://doi.org/10.1590/1676-0611-bn-2019-0774 Bertolli L. M. Talgatti D. M. Nascimento T. M. D. S. Torgan L. C. (2020). The genus Tryblionella W. Smith (Bacillariaceae, Bacillariophyta) in southern Brazil salt marshes. Biota Neotropica, 20 (1), e20190774. https://doi.org/10.1590/1676-0611-bn-2019-0774
Bey, M.-Y. & Ector, L. (2013). Atlas des diatomées des cours d’eau de la région Rhône-Alpes. Tome 6: Bacillariacées, Rhopalodiacées, Surirellacées. Direction régionale de l’Environnement, de l’Aménagement et du Logement Rhône-Alpes, Lyon, 1182 + 27 p. http://www.rhone-alpes.developpement-durable.gouv.fr/atlas-des-diatomeesdela-region-a3480.html. Bey M.-Y. Ector L. (2013). Atlas des diatomées des cours d’eau de la région Rhône-Alpes. Tome 6: Bacillariacées, Rhopalodiacées, Surirellacées. Direction régionale de l’Environnement, de l’Aménagement et du Logement Rhône-Alpes, Lyon, 1182 + 27 p. http://www.rhone-alpes.developpement-durable.gouv.fr/atlas-des-diatomeesdela-region-a3480.html.
Bhat, W. (2015). Geopolitical significance of Ladakh. Jammu & Kashmir. Dissertation submitted to Department of Geography and Regional development, University of Kashmir, Srinagar, Jammu and Kashmir, India. https://www.researchgate.net/publication/323496857 Bhat W. (2015). Geopolitical significance of Ladakh. Jammu & Kashmir. Dissertation submitted to Department of Geography and Regional development, University of Kashmir, Srinagar, Jammu and Kashmir, India. https://www.researchgate.net/publication/323496857
Bishop, I. W., Esposito, R. M., Tyree, M., & Spaulding, S. A. (2017). A diatom voucher flora from selected southeast rivers. Phytotaxa, 332 (2), 101–140. https://doi.org/10.11646/phytotaxa.332.2.1 Bishop I. W. Esposito R. M. Tyree M. Spaulding S. A. (2017). A diatom voucher flora from selected southeast rivers. Phytotaxa, 332 (2), 101–140. https://doi.org/10.11646/phytotaxa.332.2.1
Bixby, R. J., & Jahn, R. (2005). Hannaea arcus (Ehrenberg) RM Patrick: Lectotypification and nomenclatural history. Diatom Research, 20 (2), 219–226. https://doi.org/10.1080/0269249X.2005.9705632 Bixby R. J. Jahn R. (2005). Hannaea arcus (Ehrenberg) RM Patrick: Lectotypification and nomenclatural history. Diatom Research, 20 (2), 219–226. https://doi.org/10.1080/0269249X.2005.9705632
Blanco, S., Álvarez-Blanco, I., Cejudo-Figueiras, C., De Godos, I., Bécares, E., Muñoz, R., Guzman, H. O., Vargas, V. A., & Soto, R. (2013). New diatom taxa from high-altitude Andean saline lakes. Diatom Research, 28 (1), 13–27. https://doi.org/10.1080/0269249X.2012.734528 Blanco S. Álvarez-Blanco I. Cejudo-Figueiras C. De Godos I. Bécares E. Muñoz R. Guzman H. O. Vargas V. A. Soto R. (2013). New diatom taxa from high-altitude Andean saline lakes. Diatom Research, 28 (1), 13–27. https://doi.org/10.1080/0269249X.2012.734528
Bory de Saint-Vincent. (1824) Dictionnaire classique d’histoire naturelle. Rey & Gravier, Paris, France, Part 5. pp. 562–565. de Saint-Vincent Bory. (1824) Dictionnaire classique d’histoire naturelle. Rey & Gravier, Paris, France, Part 5. pp. 562–565.
Brébisson, A. de (1838). Considérations sur les Diatomées, et essai d’une classification des genres et des espèces appartenant a cette famille, Falaise, 22 pp. Brébisson A. de (1838). Considérations sur les Diatomées, et essai d’une classification des genres et des espèces appartenant a cette famille, Falaise, 22 pp.
Bukhtiyarova, L., & Round, F. E. (1996). Revision of the genus Achnanthes sensu lato. Psammothidium, a new genus based on A. marginulatum: In memory of John Carter who contributed greatly to the discovery of many Achnanthes species. Diatom Research, 11 (1), 1–30. https://doi.org/10.1080/0269249X.1996.9705361 Bukhtiyarova L. Round F. E. (1996). Revision of the genus Achnanthes sensu lato. Psammothidium, a new genus based on A. marginulatum: In memory of John Carter who contributed greatly to the discovery of many Achnanthes species. Diatom Research, 11 (1), 1–30. https://doi.org/10.1080/0269249X.1996.9705361
Cabrol, N.A., McKay, C.P., Grin, E.A., Kiss, K.T., Ács, E., Tóth, B., et al. (n.d.). (2016) Signatures of habitats and life in Earth’s high-altitude lakes: clues to Noachian aqueous environments on Mars. The Geology of Mars: Evidence from Earth-Based Analogs, ed. Mary Chapman: Cambridge University Press, 349–370. https://doi.org/10.1017/CBO9780511536014.015 Cabrol N.A. McKay C.P. Grin E.A. Kiss K.T. Ács E. Tóth B., (n.d.). (2016) Signatures of habitats and life in Earth’s high-altitude lakes: clues to Noachian aqueous environments on Mars. The Geology of Mars: Evidence from Earth-Based Analogs, ed. Chapman Mary: Cambridge University Press, 349–370. https://doi.org/10.1017/CBO9780511536014.015
Cantonati, M., Corradini, G., Jüttner, I., & Cox, E. J. (2001). Diatom assemblages in high mountain streams of the Alps and the Himalaya. Nova Hedwigia. 123: 37–62. Cantonati M. Corradini G. Jüttner I. Cox E. J. (2001). Diatom assemblages in high mountain streams of the Alps and the Himalaya. Nova Hedwigia. 123: 37–62.
Chundawat R.S., & Q. Qureshi. (1999). Planning wildlife conservation in Leh and Kargil districts of Ladakh, Jammu & Kashmir. Wildlife Institute of India, Dehradun, India. Chundawat R.S. Qureshi Q.. (1999). Planning wildlife conservation in Leh and Kargil districts of Ladakh, Jammu & Kashmir. Wildlife Institute of India, Dehradun, India.
Chaurasia, O. P., Ahmed, Z., & Ballabh, B. (2007). Ethnobotany and Plants of Trans-Himalaya. Satish Serial Publishing House, New Delhi, India. pp. 1-544. Chaurasia O. P. Ahmed Z. Ballabh B. (2007). Ethnobotany and Plants of Trans-Himalaya. Satish Serial Publishing House, New Delhi, India. pp. 1–544.
Cleve, P.T., & Grunow, A. (1880) Beiträge zur Kenntniss der arctischen Diatomeen. K Svenska Vetenskaps-Akademiens Handlingar, 17 (2):1–121, 7 pls. Cleve P.T. Grunow A. (1880) Beiträge zur Kenntniss der arctischen Diatomeen. K Svenska Vetenskaps-Akademiens Handlingar, 17 (2): 1–121,7 pls.
Colla, M. F., Lencina, A. I., & Farias, M. E. (2021). Diatom and invertebrate assemblages in high altitude saline wetlands of the Argentinian Puna and their relation to environmental factors. Anais da Academia Brasileira de Ciências, 94 (1), 1–40. https://doi.org/10.1590/0001-3765202220200070 Colla M. F. Lencina A. I. Farias M. E. (2021). Diatom and invertebrate assemblages in high altitude saline wetlands of the Argentinian Puna and their relation to environmental factors. Anais da Academia Brasileira de Ciências, 94 (1), 1–40. https://doi.org/10.1590/0001-3765202220200070
Compère, P. (1983). Some algae from Kashmir and Ladakh, W. Himalayas. In: Bulletin de la Société Royale de Botanique de Belgique / Bulletin van de Koninklijke Belgische Botanische Vereniging. T. 116, Fasc. 2. Royal Botanical Society of Belgium. pp. 141–160. Compère P. (1983). Some algae from Kashmir and Ladakh, W. Himalayas. In: Bulletin de la Société Royale de Botanique de Belgique /Bulletin van de Koninklijke Belgische Botanische Vereniging. T. 116, Fasc. 2. Royal Botanical Society of Belgium. pp. 141–160.
Compère, P. (2001) Ulnaria (Kützing) Compère, a new genus name for Fragilaria subgen. Alterasynedra Lange-Bertalot with comments on the typification of Synedra Ehrenberg. In: Jahn, R., Kociolek, J.P., Witkowski, A. & Compère, P. (Eds.) Lange-Bertalot-Festschrift: 114 Studies on Diatoms. Dedicated to Prof. Dr. Dr. h.c.Horst Lange-Bertalot on the occasion of his 65th Birthday. A.R.G. Gantner Verlag. K.G., pp. 97–102. Compère P. (2001) Ulnaria (Kützing) Compère, a new genus name for Fragilaria subgen. Alterasynedra Lange-Bertalot with comments on the typification of Synedra Ehrenberg. In: Jahn R. Kociolek J.P. Witkowski A. Compère P. (Eds.) Lange-Bertalot-Festschrift: 114 Studies on Diatoms. Dedicated to Prof. Dr. Dr. h.c.Horst Lange-Bertalot on the occasion of his 65th Birthday. A.R.G. Gantner Verlag. K.G., pp. 97–102.
Cocquyt, C. (2007). Diatom Diversity in Hausburg Tarn, A Glacial Lake on Mount Kenya, East Africa. Diatom Research, 22 (2), 255–285. https://doi.org/10.1080/0269249X.2007.9705715 Cocquyt C. (2007). Diatom Diversity in Hausburg Tarn, A Glacial Lake on Mount Kenya, East Africa. Diatom Research, 22 (2), 255–285. https://doi.org/10.1080/0269249X.2007.9705715
Cholnoky, B. J. (1960). Diatomeen aus einem Teiche am Mt. Kenya in Mittelafrika. Plant Systematics and Evolution, 107 (3–4), 351–365. https://doi.org/10.1007/BF01289759 Cholnoky B. J. (1960). Diatomeen aus einem Teiche am Mt. Kenya in Mittelafrika. Plant Systematics and Evolution, 107 (3–4), 351–365. https://doi.org/10.1007/BF01289759
Cholnoky, B.J. (1964). Die Diatomeenflora einiger Gewässer der Ruwenzori-Gebirge in Zentralafrika. Nova Hedwigia, 8, 55–101, 4 pls. Cholnoky B.J. (1964). Die Diatomeenflora einiger Gewässer der Ruwenzori-Gebirge in Zentralafrika. Nova Hedwigia, 8, 55–101, 4 pls.
Dávila, J. P. M. (2016). Taxonomiae distribuição do gênero Navicula ‘sensu stricto’ (Bacillariophyceae) em reservatórios da bacia do alto tietê e de bacias vizinhas. Dissertação (Mestrado em Biologia Vegetal) - Programa de Pós-Graduação em Ciências Biológicas, Rio Claro. Dávila J. P. M. (2016). Taxonomiae distribuição do gênero Navicula ‘sensu stricto’ (Bacillariophyceae) em reservatórios da bacia do alto tietê e de bacias vizinhas. Dissertação (Mestrado em Biologia Vegetal) - Programa de Pós-Graduação em Ciências Biológicas, Rio Claro.
Delgado, C., Novais, M. H., Blanco, S., & Almeida, S. F. P. (2016). Fragilaria rinoi sp. nov. (Fragilariales, Fragilariophyceae) from periphytic river samples in Central Portugal. European Journal of Taxonomy, 248, 1–16. https://doi.org/10.5852/ejt.2016.248 Delgado C. Novais M. H. Blanco S. Almeida S. F. P. (2016). Fragilaria rinoi sp. nov. (Fragilariales, Fragilariophyceae) from periphytic river samples in Central Portugal. European Journal of Taxonomy, 248, 1–16. https://doi.org/10.5852/ejt.2016.248
Dixit, S. S., Smol, J. P., Kingston, J. C., & Charles, D. F. (1992). Diatoms: Powerful indicators of environmental change. Environmental Science & Technology, 26 (1), 22–33. https://doi.org/10.1021/es00025a002 Dixit S. S. Smol J. P. Kingston J. C. Charles D. F. (1992). Diatoms: Powerful indicators of environmental change. Environmental Science & Technology, 26 (1), 22–33. https://doi.org/10.1021/es00025a002
Donkin, A. S. (1861). Original Communications: On the Marine Diatomaceæ of Northumberland, with a Description of Several New Species. Journal of Cell Science, 2 (1), 1–15. Donkin A. S. (1861). Original Communications: On the Marine Diatomaceæ of Northumberland, with a Description of Several New Species. Journal of Cell Science, 2 (1), 1–15.
Dorjey, K. (2019). Morpho Taxonomical and Ecological Studies of Macrofungi of Trans Himalayan Ladakh. ENVIS Bulletin: Himalayan Ecology and Development,27, 1–19. Dorjey K. (2019). Morpho Taxonomical and Ecological Studies of Macrofungi of Trans Himalayan Ladakh. ENVIS Bulletin: Himalayan Ecology and Development, 27, 1–19.
Foged N. (1966) Freshwater diatoms from Ghana. Biologiske Skrifter Det Kongelige Danske Videnskarbernes Selskab 15 (1), 1–169, 25 pls. Foged N. (1966) Freshwater diatoms from Ghana. Biologiske Skrifter Det Kongelige Danske Videnskarbernes Selskab 15 (1), 1–169, 25 pls.
Foged, N. (1978). Diatoms in eastern Australia. Bibliotheca Phycologica, 41, 1–243. Foged N. (1978). Diatoms in eastern Australia. Bibliotheca Phycologica, 41, 1–243.
Frenguelli, J. (1942). XVII. Contribución al conocimiento de las diatomeas Argentinas. Diatomeas del Neuquén (Patagonia). Revista del Museo de La Plata Nueva Serie 5 (Botánica 20): 73–219, 12 pls. Frenguelli J. (1942). XVII. Contribución al conocimiento de las diatomeas Argentinas. Diatomeas del Neuquén (Patagonia). Revista del Museo de La Plata Nueva Serie 5 (Botánica 20): 73–219, 12 pls.
Genkal, S. I., Popovskaya, G. I., & Kulikovskiy, M. S. (2008). New for science species from the genus Hannaea Patrick (Bacillariophyta). International Journal on Algae, 10(4), 321–329. https://doi.org/10.1615/InterJAlgae.v10.i4.20 Genkal S. I. Popovskaya G. I. Kulikovskiy M. S. (2008). New for science species from the genus Hannaea Patrick (Bacillariophyta). International Journal on Algae, 10 (4), 321–329. https://doi.org/10.1615/InterJAlgae.v10.i4.20
Grunow, A. (1862). Die österreichischen Diatomaceen nebst Anschluss einiger neuen Arten von andern Lokalitäten und einer kritischen Uebersicht der bisher bekannten Gattungen und Arten. Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien 12: 315–472 [Abt 1], 545–588 [Abt. 2], 7 pls. https://doi.org/10.5962/bhl.title.64361 Grunow A. (1862). Die österreichischen Diatomaceen nebst Anschluss einiger neuen Arten von andern Lokalitäten und einer kritischen Uebersicht der bisher bekannten Gattungen und Arten. Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien 12: 315–472 [Abt 1], 545–588 [Abt. 2], 7 pls. https://doi.org/10.5962/bhl.title.64361
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x PMID:34517687 Guisan A. Thuiller W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x PMID: 34517687
Hamsher, S. E., Graeff, C. L., Stepanek, J. G., & Kociolek, J. P. (2014). Frustular morphology and polyphyly in freshwater Denticula (Bacillariophyceae) species, and the description of Tetralunata gen. nov. (Epithemiaceae, Rhopalodiales). Plant Ecology and Evolution, 147 (3), 346–365. https://doi.org/10.5091/plecevo.2014.990 Hamsher S. E. Graeff C. L. Stepanek J. G. Kociolek J. P. (2014). Frustular morphology and polyphyly in freshwater Denticula (Bacillariophyceae) species, and the description of Tetralunata gen. nov. (Epithemiaceae, Rhopalodiales). Plant Ecology and Evolution, 147 (3), 346–365. https://doi.org/10.5091/plecevo.2014.990
Hecky, R. E., & Kilham, P. (1973). Diatoms in Alkaline, Saline Lakes: Ecology and Geochemical Implications. Limnology and Oceanography, 18 (1), 53–71. https://doi.org/10.4319/lo.1973.18.1.0053 Hecky R. E. Kilham P. (1973). Diatoms in Alkaline, Saline Lakes: Ecology and Geochemical Implications. Limnology and Oceanography, 18 (1), 53–71. https://doi.org/10.4319/lo.1973.18.1.0053
Hirose, K., Gotoh, T., Sato, H., & Yoshikawa, S. (2004). Diatoms in surface sediments from northeastern part of Osaka Bay, southwestern Japan. Diatom., 20, 229–240. https://doi.org/10.11464/diatom1985.20.0_229 Hirose K. Gotoh T. Sato H. Yoshikawa S. (2004). Diatoms in surface sediments from northeastern part of Osaka Bay, southwestern Japan. Diatom., 20, 229–240. https://doi.org/10.11464/diatom1985.20.0_229
Hlúbiková, D., Blanco, S., Falasco, E., Gomà, J., Hoffmann, L., & Ector, L. (2009). Nitzschia alicae sp. nov. and N. puriformis sp. nov., New diatoms from European rivers and comparison with the type material of N. Sublinearis and N. Pura. Journal of Phycology, 45 (3), 742–760. https://doi.org/10.1111/j.1529-8817.2009.00692.x PMID:27034050 Hlúbiková D. Blanco S. Falasco E. Gomà J. Hoffmann L. Ector L. (2009). Nitzschia alicae sp. nov. and N. puriformis sp. nov., New diatoms from European rivers and comparison with the type material of N. Sublinearis and N. Pura. Journal of Phycology, 45 (3), 742–760. https://doi.org/10.1111/j.1529-8817.2009.00692.x PMID: 27034050
Hlúbiková, D., Ector, L., & Hoffmann, L. (2011). Examination of the type material of some diatom species related to Achnanthidium minutissimum (Kütz.) Czarn. (Bacillariophyceae). Algological Studies, 136-137(1), 19–43. https://doi.org/10.1127/1864-1318/2011/0136-0019 Hlúbiková D. Ector L. Hoffmann L. (2011). Examination of the type material of some diatom species related to Achnanthidium minutissimum (Kütz.) Czarn. (Bacillariophyceae). Algological Studies, 136-137 (1), 19–43. https://doi.org/10.1127/1864-1318/2011/0136-0019
Hofmann, G., Werum, M. & Lange-Bertalot, H. (2013). Aufwuchs-Diatomeen im Süßwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. 2. Korrigierte Auflage. A.R.G. Gantner, Ruggell, 908 pp. Hofmann G. Werum M. Lange-Bertalot H. (2013). Aufwuchs-Diatomeen im Süßwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. 2. Korrigierte Auflage. A.R.G. Gantner, Ruggell, 908 pp.
Hustedt, F. (1943). Die Diatomeenflora einiger Hochgebirgsseen der Landschaft Davos in den schweizer Alpen. Internationale Revue der Gesamten Hydrobiologie, 43, 124-197, 225–280. https://doi.org/10.1002/iroh.19430430108 Hustedt F. (1943). Die Diatomeenflora einiger Hochgebirgsseen der Landschaft Davos in den schweizer Alpen. Internationale Revue der Gesamten Hydrobiologie, 43, 124–197, 225–280. https://doi.org/10.1002/iroh.19430430108
Islam, S. T., Dar, S. A., Sofi, M. S., Bhat, S. U., Sabha, I., Hamid, A., Jehangir, A., & Bhat, A. A. (2021). Limnochemistry and Plankton Diversity in Some High-Altitude Lakes of Kashmir Himalaya. Frontiers in Environmental Science, 9, 1–16. https://doi.org/10.3389/fenvs.2021.681965 Islam S. T. Dar S. A. Sofi M. S. Bhat S. U. Sabha I. Hamid A. Jehangir A. Bhat A. A. (2021). Limnochemistry and Plankton Diversity in Some High-Altitude Lakes of Kashmir Himalaya. Frontiers in Environmental Science, 9, 1–16. https://doi.org/10.3389/fenvs.2021.681965
Ivanov, P., Kirilova, E., & Ector, L. (2006). Diatom species composition from the River Iskar in the Sofia region, Bulgaria. - In: Ognjanova Rumenova, N. & Manoylov, K. (eds): Advances in Phycological studies, 167-190, Pensoft Publishers and University Publishing House, Sofia–Moscow. Ivanov P. Kirilova E. Ector L. (2006). Diatom species composition from the River Iskar in the Sofia region, Bulgaria. - In: Ognjanova Rumenova N. Manoylov K. (eds): Advances in Phycological studies, 167–190, Pensoft Publishers and University Publishing House, Sofia-Moscow.
Jahn, R., Kusber, W. H., Skibbe, O., Zimmermann, J., Van, A. T., Buczkó, K., & Abarca, N. (2019). Gomphonella olivacea (Bacillariophyceae)-a new phylogenetic position for a well-known taxon, its typification, new species and combinations. Plant Ecology and Evolution, 152 (2), 219–247. https://doi.org/10.5091/plecevo.2019.1603 Jahn R. Kusber W. H. Skibbe O. Zimmermann J. Van A. T. Buczkó K. Abarca N. (2019). Gomphonella olivacea (Bacillariophyceae)-a new phylogenetic position for a well-known taxon, its typification, new species and combinations. Plant Ecology and Evolution, 152 (2), 219–247. https://doi.org/10.5091/plecevo.2019.1603
Joh, G. (2014). Diatom flora of genus Stauroneis (Bacillariophyta) from mainly the mountain peatlands of Korea. Journal of Ecology and Environment, 37 (4), 257–270. https://doi.org/10.5141/ecoenv.2014.030 Joh G. (2014). Diatom flora of genus Stauroneis (Bacillariophyta) from mainly the mountain peatlands of Korea. Journal of Ecology and Environment, 37 (4), 257–270. https://doi.org/10.5141/ecoenv.2014.030
John J. (2016). Diatoms from Stradbroke and Fraser Islands, Australia: taxonomy and biogeography. The diatom flora of Australia volume 1. Schmitten - Oberreifenberg: Koeltz Botanical Books. 377 pp. John J. (2016). Diatoms from Stradbroke and Fraser Islands, Australia: taxonomy and biogeography. The diatom flora of Australia volume 1. Schmitten - Oberreifenberg: Koeltz Botanical Books. 377 pp.
John, J. (2018). Diatoms from Tasmania: taxonomy and biogeography. The diatom flora of Australia Volume 2. Schmitten - Oberreifenberg: Koeltz Botanical Books. 656 pp. John J. (2018). Diatoms from Tasmania: taxonomy and biogeography. The diatom flora of Australia Volume 2. Schmitten - Oberreifenberg: Koeltz Botanical Books. 656 pp.
Jüttner, I., Kociolek, J. P., Gurung, S., Gurung, A., Sharma, C. M., Levkov, Z., Williams, D. M., Ector, L. (2018). The genus Gomphonema (Bacillariophyta) in Rara Lake, Nepal: taxonomy, morphology, habitat distribution and description of five new species, and a new record for Gomphoneis qii. Diatom Research. 33:283–320., available online at https://doi.org/10.1080/0269249X.2018.1528182 Jüttner I. Kociolek J. P. Gurung S. Gurung A. Sharma C. M. Levkov Z. Williams D. M. Ector L. (2018). The genus Gomphonema (Bacillariophyta) in Rara Lake, Nepal: taxonomy, morphology, habitat distribution and description of five new species, and a new record for Gomphoneis qii. Diatom Research. 33: 283–320., available online at https://doi.org/10.1080/0269249X.2018.1528182
Jüttner, I., Gurung, S., Gurung, A., Sharma, C. M., & Sharma, S. (2021). Diatom Studies in High Altitude Lakes in the Himalaya. In Bajracharya, R. M., Sitaula, B. K., Gurung, S., Raut, N. (Ed.) Sustainable Natural Resource Management in the Himalayan Region. Livelihood and Climate Change (pp. 241–254). Nova Science Publishers. Jüttner I. Gurung S. Gurung A. Sharma C. M. Sharma S. (2021). Diatom Studies in High Altitude Lakes in the Himalaya. In Bajracharya R. M. Sitaula B. K. Gurung S. Raut N. (Ed.) Sustainable Natural Resource Management in the Himalayan Region. Livelihood and Climate Change (pp. 241–254). Nova Science Publishers.
Joshi, P. K., Rawat, G. S., Padilya, H., & Roy, P. S. (2006). Biodiversity Characterization in Nubra Valley, Ladakh with Special Reference to Plant Resource Conservation and Bioprospecting. Biodiversity and Conservation, 15, 4253–4270. https://doi.org/10.1007/s10531-005-3578-y Joshi P. K. Rawat G. S. Padilya H. Roy P. S. (2006). Biodiversity Characterization in Nubra Valley, Ladakh with Special Reference to Plant Resource Conservation and Bioprospecting. Biodiversity and Conservation, 15, 4253–4270. https://doi.org/10.1007/s10531-005-3578-y
Kant, S., & Gupta, P. (1998). Algal Flora of Ladakh. Scientific Publishers. Kant S. Gupta P. (1998). Algal Flora of Ladakh. Scientific Publishers.
Karthick, B., Hamilton, P. B., & Kociolek, J. P. (2013). An illustrated guide to common diatoms of Peninsular India. Gubbi Labs LLP. Karthick B. Hamilton P. B. Kociolek J. P. (2013). An illustrated guide to common diatoms of Peninsular India. Gubbi Labs LLP.
Kheiri, S., Solak, C. N., Edlund, M. B., Spaulding, S., Nejadsattari, T., Asri, Y., & Hamdi, S. M. M. (2018). Biodiversity of diatoms in the Karaj River in the Central Alborz, Iran. Diatom Research, 33 (3), 355–380. https://doi.org/10.1080/0269249X.2018.1557747 Kheiri S. Solak C. N. Edlund M. B. Spaulding S. Nejadsattari T. Asri Y. Hamdi S. M. M. (2018). Biodiversity of diatoms in the Karaj River in the Central Alborz, Iran. Diatom Research, 33 (3), 355–380. https://doi.org/10.1080/0269249X.2018.1557747
Kobayashi, H. (1997). Comparative studies among four linearlanceolate Achnanthidium species (Bacillariophyceae) with curved terminal raphe endings. Nova Hedwigia, 65 (1–4), 147–163. https://doi.org/10.1127/nova.hedwigia/65/1997/147 Kobayashi H. (1997). Comparative studies among four linear-lanceolate Achnanthidium species (Bacillariophyceae) with curved terminal raphe endings. Nova Hedwigia, 65 (1-4), 147–163. https://doi.org/10.1127/nova.hedwigia/65/1997/147
Kociolek, J.P. & Stoermer, E.F. (1987). Ultrastructure of Cymbella sinuata and its allies (Bacillariophyceae), and their transfer to Reimeria, gen. nov. Systematic Botany. 12 (4): 451–459. https://doi.org/10.2307/2418882 Kociolek J.P. Stoermer E.F. (1987). Ultrastructure of Cymbella sinuata and its allies (Bacillariophyceae), and their transfer to Reimeria, gen. nov. Systematic Botany. 12 (4): 451–459. https://doi.org/10.2307/2418882
Kociolek, J. P., & Kingston, J. C. (1999). Taxonomy, ultrastructure, and distribution of some gomphonemoid diatoms (Bacillariophyceae: Gomphonemataceae) from rivers in the United States. Canadian Journal of Botany, 77 (5), 686–705. https://doi.org/10.1139/b99-007 Kociolek J. P. Kingston J. C. (1999). Taxonomy, ultrastructure, and distribution of some gomphonemoid diatoms (Bacillariophyceae: Gomphonemataceae) from rivers in the United States. Canadian Journal of Botany, 77 (5), 686–705. https://doi.org/10.1139/b99-007
Kociolek, J. P., & Spaulding, S. A. (2000). Freshwater diatom biogeography. Nova Hedwigia, 71 (1–2), 223–241. https://doi.org/10.1127/nova/71/2000/223 Kociolek J. P. Spaulding S. A. (2000). Freshwater diatom biogeography. Nova Hedwigia, 71 (1–2), 223–241. https://doi.org/10.1127/nova/71/2000/223
Kociolek, J. P., You, Q.-M., Wang, Q.-X., & Liu, Q. (2015). Consideration of some interesting freshwater gomphonemoid diatoms from North America and China, and the description of Gomphosinica, gen. nov. Nova Hedwigia, 144, 175–198. https://doi.org/10.1127/nova_supp1/2015/0038 Kociolek J. P. You Q.-M. Wang Q.-X. Liu Q. (2015). Consideration of some interesting freshwater gomphonemoid diatoms from North America and China, and the description of Gomphosinica, gen. nov. Nova Hedwigia, 144, 175–198. https://doi.org/10.1127/nova_supp1/2015/0038
Krammer, K., & Lange-Bertalot, H. (1987). Morphology and taxonomy of Surirella brebissonii and related taxa. Diatom Research, 2 (1), 77–95. https://doi.org/10.1080/0269249X.1987.9704986 Krammer K. Lange-Bertalot H. (1987). Morphology and taxonomy of Surirella brebissonii and related taxa. Diatom Research, 2 (1), 77–95. https://doi.org/10.1080/0269249X.1987.9704986
Krammer, K. (1997). Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 1. Allgemeines und Encyonema Part. Bibliotheca Diatomologica 36: 1–382. Krammer K. (1997). Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 1. Allgemeines und Encyonema Part. Bibliotheca Diatomologica 36: 1–382.
Krammer, K. (2000). The genus Pinnularia. In: Lange-Bertalot, H. (Ed.), Diatom of Europe: Diatoms of the European inland waters and comparable habitats. Volume 1. Ruggell: A.R.G. Gantner Verlag K.G. 703 pp. Krammer K. (2000). The genus Pinnularia. In: Lange-Bertalot H. (Ed.), Diatom of Europe: Diatoms of the European inland waters and comparable habitats. Volume 1. Ruggell: A.R.G. Gantner Verlag K.G. 703 pp.
Krammer, K. (2000). Cymbella. In: Lange-Bertalot, H. (Ed.), Diatom of Europe: Diatoms of the European inland waters and comparable habitats. Volume 3. Ruggell: A.R.G. Gantner Verlag K.G. 584 pp. Krammer K. (2000). Cymbella. In: Lange-Bertalot H. (Ed.), Diatom of Europe: Diatoms of the European inland waters and comparable habitats. Volume 3. Ruggell: A.R.G. Gantner Verlag K.G. 584 pp.
Krasske, G. (1948). Diatomeen tropischer Moosrasen. Svensk Botanisk Tidskrift 42 (4): 404–443. Krasske G. (1948). Diatomeen tropischer Moosrasen. Svensk Botanisk Tidskrift 42 (4): 404–443.
Kulikovskiy, M. S., Genkal, S. I., & Mikheyeva, T. M. (2011). New data on Bacillariophyta of Belarussia. 2. Fam. Fragilariaceae (Kütz.) De Tony, Diatomaceae Dumort. and Tabellariaceae F. Schütt. Algologia., 21 (3), 357–373. Kulikovskiy M. S. Genkal S. I. Mikheyeva T. M. (2011). New data on Bacillariophyta of Belarussia. 2. Fam. Fragilariaceae (Kütz.) De Tony, Diatomaceae Dumort. and Tabellariaceae F. Schütt. Algologia., 21 (3), 357–373.
Kulikovskiy, M. S., Glushchenko, A. M., Genkal, S. I., & Kuznetsova, I. V. (2016). Identification book of diatoms from Russia. Filigran, Yaroslavl. Kulikovskiy M. S. Glushchenko A. M. Genkal S. I. Kuznetsova I. V. (2016). Identification book of diatoms from Russia. Filigran, Yaroslavl.
Kulikovskiy, M., Maltsev, Y., Glushchenko, A., Kuznetsova, I., Kapustin, D., Gusev, E., Lange-Bertalot, H., Genkal, S., & Kociolek, J. P. (2020). Gogorevia, a new monoraphid diatom genus for Achnanthes exigua and allied taxa (Achnanthidiaceae) described on the basis of an integrated molecular and morphological approach. Journal of Phycology, 56(6), 1601–1613. https://doi.org/10.1111/jpy.13064 PMID:32871027 Kulikovskiy M. Maltsev Y. Glushchenko A. Kuznetsova I. Kapustin D. Gusev E. Lange-Bertalot H. Genkal S. Kociolek J. P. (2020). Gogorevia, a new monoraphid diatom genus for Achnanthes exigua and allied taxa (Achnanthidiaceae) described on the basis of an integrated molecular and morphological approach. Journal of Phycology, 56 (6), 1601–1613. https://doi.org/10.1111/jpy.13064 PMID: 32871027
Kulikovskiy, M., Genkal, S., Maltsev, Y., Glushchenko, A., Kuznetsova, I., Kapustin, D., Gusev, E., Martynenko, N., & Kociolek, J. P. (2022). Resurrection of the diatom genus Stephanocyclus (Coscinodiscophyceae: Stephanodiscaceae) on the basis of an integrated molecular and morphological approach. Fottea, 22 (2), 181–191. https://doi.org/10.5507/fot.2021.025 Kulikovskiy M. Genkal S. Maltsev Y. Glushchenko A. Kuznetsova I. Kapustin D. Gusev E. Martynenko N. Kociolek J. P. (2022). Resurrection of the diatom genus Stephanocyclus (Coscinodiscophyceae: Stephanodiscaceae) on the basis of an integrated molecular and morphological approach. Fottea, 22 (2), 181–191. https://doi.org/10.5507/fot.2021.025
Kumar, A., Bhatt, J. P., & Pandit, M. K. (2012). Assessment of Species Diversity and Distribution of Diatoms in High Altitude Aquatic Ecosystem of Trans Himalaya, India. In 22nd International Diatom Symposium, 26–31 August 2012: abstracts (1-260). Oostende, Belgium: Vlaams Instituut voor de Zee (VLIZ) Special Publication. Kumar A. Bhatt J. P. Pandit M. K. (2012). Assessment of Species Diversity and Distribution of Diatoms in High Altitude Aquatic Ecosystem of Trans Himalaya, India. In 22nd International Diatom Symposium, 26–31 August 2012: abstracts (1-260). Oostende, Belgium: Vlaams Instituut voor de Zee (VLIZ) Special Publication.
Kumar, L., & Lamsal, P. (2016). High altitude wetlands of Nepal. The wetland book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_278-1 Kumar L. Lamsal P. (2016). High altitude wetlands of Nepal. The wetland book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_278-1
Kützing, F.T. (1844). Die Kieselschaligen Bacillarien oder Diatomeen. pp. [i-vii], [1] –152, pls 1–30. Nordhausen: zu finden bei W. Köhne. Kützing F.T. (1844). Die Kieselschaligen Bacillarien oder Diatomeen. pp. [ i–vii ], [1] –152, pls 1–30. Nordhausen: zu finden bei W. Köhne.
Kützing, F. T. (1849). Species algarum. Lipsiae (Leipzig): FA Brockhaus. Куликовский, M.C., Генкал, С.И. & Михеева T.M. (2011). Новые данные к флоре Bacillariophyta Беларуси. 2. Сем. Fragilariaceae (Kutz.) de Tony, Diatomaceae Dumort. [In Russian]. Tabellariaceae F. Schutt. Альгология, 21 (3), 357–373. Kützing F. T. (1849). Species algarum. Lipsiae (Leipzig): FA Brockhaus. Куликовский M.C. Генкал С.И. Михеева T.M. (2011). Новые данные к флоре Bacillariophyta Беларуси. 2. Сем. Fragilariaceae (Kutz.) de Tony, Diatomaceae Dumort. [In Russian]. Tabellariaceae F. Schutt. Альгология., 21 (3), 357–373.
Lange-Bertalot, H., & Krammer, K. (1987). Bacillariaceae, Epithemiaceae, Surirellaceae, Neue and wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen und Ergänzungen zu den Naviculaceae. [Berlin: J. Cramer Verlag.]. Bibliotheca Diatomologica, 15, 1–289. Lange-Bertalot H. Krammer K. (1987). Bacillariaceae, Epithemiaceae, Surirellaceae, Neue and wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen und Ergänzungen zu den Naviculaceae. [Berlin: J. Cramer Verlag.]. Bibliotheca Diatomologica, 15, 1–289.
Lange-Bertalot, H. (1993). 85 neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Süsswasserflora von Mitteleuropa, Vol. 2/1-4. 85 New Taxa and much more than 100 taxonomic clarifications supplementary to SüBwasserflora von Mitteleuropa Vol. 2/1-4. Bibliotheca Diatomologica 27: 1–454, incl. 1427 figs in 134 pls. Lange-Bertalot H. (1993). 85 neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Süsswasserflora von Mitteleuropa, Vol. 2/1-4. 85 New Taxa and much more than 100 taxonomic clarifications supplementary to SüBwasserflora von Mitteleuropa Vol. 2/1-4. Bibliotheca Diatomologica 27: 1–454, incl. 1427 figs in 134 pls.
Lange-Bertalot, H. & Moser, G. (1994). Brachysira. Monographie der Gattung und Naviculadicta nov. gen. Bibliotheca Diatomologica 29: 1–212. Lange-Bertalot H. Moser G. (1994). Brachysira. Monographie der Gattung und Naviculadicta nov. gen. Bibliotheca Diatomologica 29: 1–212.
Lange-Bertalot, H. & Metzeltin, D. (1996) Indicators of oligotrophy - 800 taxa representative of three ecologically distinct lake types, Carbonate buffered - Oligodystrophic - Weakly buffered soft water. Iconographia Diatomologica 2: 1–390. Lange-Bertalot H. Metzeltin D. (1996) Indicators of oligotrophy - 800 taxa representative of three ecologically distinct lake types, Carbonate buffered - Oligodystrophic - Weakly buffered soft water. Iconographia Diatomologica 2: 1–390.
Lange-Bertalot, H. (2001). Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. Diatoms of Europe: Diatoms of the European inland waters and comparable habitats. Volume 2. Ruggell: A.R.G. Gantner Verlag K.G. 526 pp. Lange-Bertalot H. (2001). Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. Diatoms of Europe: Diatoms of the European inland waters and comparable habitats. Volume 2. Ruggell: A.R.G. Gantner Verlag K.G. 526 pp.
Lange-Bertalot, H. Genkal, S.I. & Vechov, N.V. (2004). New freshwater species of Bacillariophyta. Biologiia Vnutrennikh Vod (Biology of Inland Waters). [Information Bulletin]. Informatisii Biulleten, 4, 12–17. Lange-Bertalot H. Genkal S.I. Vechov N.V. (2004). New freshwater species of Bacillariophyta. Biologiia Vnutrennikh Vod (Biology of Inland Waters). [Information Bulletin]. Informatisii Biulleten, 4, 12–17.
Lange-Bertalot, H., Hofmann, G., Werum, M., Cantonati, M., (2017). Freshwater benthic diatoms of Central Europe: Over 800 common species used in ecological assessment. English edition with updated taxonomy and added species. Koeltz Botanical Books, Schmitten-Oberreifenberg, Germany. pp. 1–942. Lange-Bertalot H. Hofmann G. Werum M. Cantonati M., (2017). Freshwater benthic diatoms of Central Europe: Over 800 common species used in ecological assessment. English edition with updated taxonomy and added species. Koeltz Botanical Books, Schmitten-Oberreifenberg, Germany. pp. 1–942.
Lee, J. H. (2012). Chrysophyta: Bacillariophyceae: Pennales: Raphidineae: Naviculaceae. Freshwater diatoms VI. Algal flora of Korea. 3(8): 1–56. National Institute of Biological Resources. Lee J. H. (2012). Chrysophyta: Bacillariophyceae: Pennales: Raphidineae: Naviculaceae. Freshwater diatoms VI. Algal flora of Korea. 3 (8): 1–56. National Institute of Biological Resources.
Levkov, Z. (2009). The Amphora sensu lato. In H. Lange-Bertalot (Ed.), Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats. Volume 5: Ruggell: A.R.G. Gantner. 916 pp. Levkov Z. (2009). The Amphora sensu lato. In Lange-Bertalot H. (Ed.), Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats. Volume 5: Ruggell: A.R.G. Gantner. 916 pp.
Levkov, Z., & Ector, L. (2010). A comparative study of Reimeria species (Bacillariophyceae). Nova Hedwigia, 90 (3–4), 469–489. https://doi.org/10.1127/0029-5035/2010/0090-0469 Levkov Z. Ector L. (2010). A comparative study of Reimeria species (Bacillariophyceae). Nova Hedwigia, 90 (3–4), 469–489. https://doi.org/10.1127/0029-5035/2010/0090-0469
Levkov, Z., Tofilovska, S., Jovanovska, E., Cvetkoska, A., & Metzeltin, D. (2016a). Revision of the Stauroneis smithii Grunow (Bacillariophyceae) species complex from Macedonia. Botanica Serbica, 40(2), 167–178. Levkov Z. Tofilovska S. Jovanovska E. Cvetkoska A. Metzeltin D. (2016a). Revision of the Stauroneis smithii Grunow (Bacillariophyceae) species complex from Macedonia. Botanica Serbica, 40 (2), 167–178.
Levkov, Z., Mitic-Kopanja, D., & Reichardt, E. (2016b). The diatom genus Gomphonema in the Republic of Macedonia. In: H. Lange-Bertalot, (Ed.) Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. Vol. 8, Oberreifenberg: Koeltz Botanical Books. 552 pp. Levkov Z. Mitic-Kopanja D. Reichardt E. (2016b). The diatom genus Gomphonema in the Republic of Macedonia. In: Lange-Bertalot H., (Ed.) Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. Vol. 8, Oberreifenberg: Koeltz Botanical Books. 552 pp.
Levkov, Z., Tofilovska, S., & Mitic-Kopanja, D. (2016c). Species of the diatom genus Craticula Grunow (bacillariophyceae) from Macedonia. Contributions, Section of Natural Mathematical & Biotechnical Sciences, 37 (2). 129–165. https://doi.org/10.20903/CSNMBS_MASA.2016.37.2.40 Levkov Z. Tofilovska S. Mitic-Kopanja D. (2016c). Species of the diatom genus Craticula Grunow (bacillariophyceae) from Macedonia. Contributions, Section of Natural Mathematical & Biotechnical Sciences, 37 (2). 129–165. https://doi.org/10.20903/CSNMBS_MASA.2016.37.2.40
Ligowski, R., Godlewski, M., & Lukowski, A. (1992). Sea Ice Diatoms and Ice Edge Planktonic Diatoms at the Northern Limit of the Weddell Sea Pack Ice. In 9th-19th Proceedings of the NIPR Symposium on Polar Biology, 5, 9–20. Ligowski R. Godlewski M. Lukowski A. (1992). Sea Ice Diatoms and Ice Edge Planktonic Diatoms at the Northern Limit of the Weddell Sea Pack Ice. In 9th-19th Proceedings of the NIPR Symposium on Polar Biology, 5, 9–20.
Liu, Y., Kociolek, J. P., & Wang, Q. (2013). Six New Species of Gomphonema Ehrenberg (Bacillariophyceae) Species from the Great Xing’an Mountains, Northeastern China. Cryptogamie. Algologie, 34 (4), 301–324. https://doi.org/10.7872/crya.v34.iss4.2013.301 Liu Y. Kociolek J. P. Wang Q. (2013). Six New Species of Gomphonema Ehrenberg (Bacillariophyceae) Species from the Great Xing’an Mountains, Northeastern China. Cryptogamie. Algologie, 34 (4), 301–324. https://doi.org/10.7872/crya.v34.iss4.2013.301
Liu, Q., Kociolek, J. P., Li, B., You, Q., & Wang, Q. (2017). The diatom genus Neidium Pfitzer (Bacillariophyceae) from Zoige Wetland, China. Berlin: J. Cramer Verlag. Bibliotheca Diatomologica, Vol. 63, 120 pp. Liu Q. Kociolek J. P. Li B. You Q. Wang Q. (2017). The diatom genus Neidium Pfitzer (Bacillariophyceae) from Zoige Wetland, China. Berlin: J. Cramer Verlag. Bibliotheca Diatomologica, Vol. 63, 120 pp.
Mann, D. G., McDonald, S. M., Bayer, M. M., Droop, S. J. M., Chepurnov, V. A., Loke, R. E., Ciobanu, A., & Du Buf, J. H. (2004). The Sellaphora pupula species complex (Bacillariophyceae): Morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia, 43 (4), 459–482. https://doi.org/10.2216/i0031-8884-43-4-459.1 Mann D. G. McDonald S. M. Bayer M. M. Droop S. J. M. Chepurnov V. A. Loke R. E. Ciobanu A. Du Buf J. H. (2004). The Sellaphora pupula species complex (Bacillariophyceae): Morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia, 43 (4), 459–482. https://doi.org/10.2216/i0031-8884-43-4-459.1
Mann, D. G., Thomas, S. J., & Evans, K. M. (2008). Revision of the diatom genus Sellaphora: A first account of the larger species in the British Isles. Fottea, 8 (1), 15–78. https://doi.org/10.5507/fot.2008.002 Mann D. G. Thomas S. J. Evans K. M. (2008). Revision of the diatom genus Sellaphora: A first account of the larger species in the British Isles. Fottea, 8 (1), 15–78. https://doi.org/10.5507/fot.2008.002
Manoylov, K. M. (2007). On some Psammothidium species from rivers in the United States. Diatom Research, 22 (2), 317–327. https://doi.org/10.1080/0269249X.2007.9705718 Manoylov K. M. (2007). On some Psammothidium species from rivers in the United States. Diatom Research, 22 (2), 317–327. https://doi.org/10.1080/0269249X.2007.9705718
Mereschkowsky, C. (1902). On Sellaphora, a new genus of diatoms. Annals & Magazine of Natural History, 9 (51), 185–195. https://doi.org/10.1080/00222930208678565 Mereschkowsky C. (1902). On Sellaphora, a new genus of diatoms. Annals & Magazine of Natural History, 9 (51), 185–195. https://doi.org/10.1080/00222930208678565
Metzeltin, D., Lange-Bertalot, H. & Nergui, S. (2009) Diatoms in Mongolia. In: Lange-Bertalot, H. (Ed.), Iconographia diatomologica 20: annotated diatom micrographs. pp. 1–703. A.R.G.Gantner Verlag K. G, Ruggell, Liechtenstein. Metzeltin D. Lange-Bertalot H. Nergui S. (2009) Diatoms in Mongolia. In: Lange-Bertalot H. (Ed.), Iconographia diatomologica 20: annotated diatom micrographs. pp. 1–703. A.R.G.Gantner Verlag K. G, Ruggell, Liechtenstein.
Mirzahasanlou, J. P., Nejadsattari, T., Ramezanpour, Z., Namin, J. I., & Asri, Y. (2018). The epilithic and epipelic diatom flora of the Balikhli River, Northwest Iran. Turkish Journal of Botany, 42 (4), 518–532. https://doi.org/10.3906/bot-1711-46 Mirzahasanlou J. P. Nejadsattari T. Ramezanpour Z. Namin J. I. Asri Y. (2018). The epilithic and epipelic diatom flora of the Balikhli River, Northwest Iran. Turkish Journal of Botany, 42 (4), 518–532. https://doi.org/10.3906/bot-1711-46
Mohan, J., Stone, J. R., Nicholson, K., Neumann, K., Dowling, C., & Sharma, S. (2018). Lindavia biswashanti, a new diatom species (Bacillariophyta) from Gokyo Cho, Himalayan Range, Nepal. Phytotaxa, 364 (1), 101–107. https://doi.org/10.11646/phytotaxa.364.1.7 Mohan J. Stone J. R. Nicholson K. Neumann K. Dowling C. Sharma S. (2018). Lindavia biswashanti, a new diatom species (Bacillariophyta) from Gokyo Cho, Himalayan Range, Nepal. Phytotaxa, 364 (1), 101–107. https://doi.org/10.11646/phytotaxa.364.1.7
Monnier, O., Lange-Bertalot, H., Hoffmann, L., & Ector, L. (2007). The genera Achnanthidium Kutzing and Psammothidium Bukhtiyarova et Round in the family Achnanthidiaceae (Bacillariophyceae): A reappraisal of the differential criteria. Cryptogamie. Algologie, 28 (2), 141–158. Monnier O. Lange-Bertalot H. Hoffmann L. Ector L. (2007). The genera Achnanthidium Kutzing and Psammothidium Bukhtiyarova et Round in the family Achnanthidiaceae (Bacillariophyceae): A reappraisal of the differential criteria. Cryptogamie. Algologie, 28 (2), 141–158.
Morales, E. A., Wetzel, C. E., Van de Vijver, B., & Ector, L. (2015). Morphological studies on type material of widely cited araphid diatoms (Bacillariophyta). Phycologia, 54 (5), 455–470. https://doi.org/10.2216/15-21.1 Morales E. A. Wetzel C. E. Van de Vijver B. Ector L. (2015). Morphological studies on type material of widely cited araphid diatoms (Bacillariophyta). Phycologia, 54 (5), 455–470. https://doi.org/10.2216/15-21.1
Müller, GFO. (1895). Rhopalodia ein neues Genus der Bacillariaceen. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie, 22, 54–71. Müller GFO. (1895). Rhopalodia ein neues Genus der Bacillariaceen. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie, 22, 54–71.
Nikulina, T.V., Kociolek, J.P. (2011). Diatoms from Hot Springs from Kuril and Sakhalin Islands (Far East, Russia). In: Seckbach, J., Kociolek, P. (Eds.), The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1327-7_15 Nikulina T.V. Kociolek J.P. (2011). Diatoms from Hot Springs from Kuril and Sakhalin Islands (Far East, Russia). In: Seckbach J. Kociolek P. (Eds.), The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1327-7_15
Olszyński, R. M., & Żelazna-Wieczorek, J. (2018). Aulacoseira pseudomuzzanensis sp. nov. and other centric diatoms from post iron ore mining reservoirs in Poland. Diatom Research, 33 (2), 155–185. https://doi.org/10.1080/0269249X.2018.1509886 Olszyński R. M. Żelazna-Wieczorek J. (2018). Aulacoseira pseudomuzzanensis sp. nov. and other centric diatoms from post iron ore mining reservoirs in Poland. Diatom Research, 33 (2), 155–185. https://doi.org/10.1080/0269249X.2018.1509886
Owen, R. B., Renaut, R. W., & Jones, B. (2008). Geothermal diatoms: A comparative study of floras in hot spring systems of Iceland, New Zealand, and Kenya. Hydrobiologia, 610, 175–192. https://doi.org/10.1007/s10750-008-9432-y Owen R. B. Renaut R. W. Jones B. (2008). Geothermal diatoms: A comparative study of floras in hot spring systems of Iceland, New Zealand, and Kenya. Hydrobiologia, 610, 175–192. https://doi.org/10.1007/s10750-008-9432-y
Pandey, S., Clarke, J., Nema, P., Bonaccorsi, R., Som, S., Sharma, M., & Phartiyal, B. et al. (2020). Ladakh: Diverse, high-altitude extreme environments for off-earth analogue and astrobiology research. International Journal of Astrobiology, 19 (1), 78–98. https://doi.org/10.1017/S1473550419000119 Pandey S. Clarke J. Nema P. Bonaccorsi R. Som S. Sharma M. Phartiyal B. (2020). Ladakh: Diverse, high-altitude extreme environments for off-earth analogue and astrobiology research. International Journal of Astrobiology, 19 (1), 78–98. https://doi.org/10.1017/S1473550419000119
Patrick, R., & Reimer, C. W. (1966). The Diatoms of the United States. Vol 1. Monographs - Academy of Natural Sciences of Philadelphia, 13, 1–688. Patrick R. Reimer C. W. (1966). The Diatoms of the United States. Vol 1. Monographs - Academy of Natural Sciences of Philadelphia, 13, 1–688.
Patrick, R. & Reimer, C.W. (1975). The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 2. Monographs - Academy of Natural Sciences of Philadelphia, 13, 1–213. Patrick R. Reimer C.W. (1975). The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 2. Monographs - Academy of Natural Sciences of Philadelphia, 13, 1–213.
Pfitzer, E. (1871). Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomaceen). In: Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie Bd 2. pp. 1-189. Bonn: bei Adolph Marcus. Pfitzer E. (1871). Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomaceen). In: Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie Bd 2. pp. 1–189. Bonn: bei Adolph Marcus.
Phartiyal, B., Singh, R., Joshi, P., & Nag, D. (2020). Late-Holocene climatic record from a glacial lake in Ladakh range, Trans-Himalaya, India. The Holocene, 30 (7), 1029–1042. https://doi.org/10.1177/0959683620908660 Phartiyal B. Singh R. Joshi P. Nag D. (2020). Late-Holocene climatic record from a glacial lake in Ladakh range, Trans-Himalaya, India. The Holocene, 30 (7), 1029–1042. https://doi.org/10.1177/0959683620908660
Potapova, M. G., & Charles, D. F. (2002). Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of biogeography, 29 (2), 167–187. https://doi.org/10.1046/j.1365-2699.2002.00668.x Potapova M. G. Charles D. F. (2002). Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of biogeography, 29 (2), 167–187. https://doi.org/10.1046/j.1365-2699.2002.00668.x
Potapova, M. G., & Ponader, K. C. (2004). Two common North American diatoms, Achnanthidium rivulare sp. nov. and A. deflexum (Reimer) Kingston: Morphology, ecology and comparison with related species. Diatom Research, 19 (1), 33–57. https://doi.org/10.1080/0269249X.2004.9705606 Potapova M. G. Ponader K. C. (2004). Two common North American diatoms, Achnanthidium rivulare sp. nov. and A. deflexum (Reimer) Kingston: Morphology, ecology and comparison with related species. Diatom Research, 19 (1), 33–57. https://doi.org/10.1080/0269249X.2004.9705606
Pumas, C., Pruetiworanan, S., & Peerapornpisal, Y. (2018). Diatom Diversity in some hot springs of northern Thailand. Botanica. 24 (1): 69–86. Pumas C. Pruetiworanan S. Peerapornpisal Y. (2018). Diatom Diversity in some hot springs of northern Thailand. Botanica. 24 (1): 69–86.
Round, F. E. (1981). The ecology of algae. Cambridge University Press. Round F. E. (1981). The ecology of algae. Cambridge University Press.
Round, F.E., Crawford, R.M. & Mann, D.G. (1990). Diatoms: Biology and morphology of the genera. Cambridge University Press. Round F.E. Crawford R.M. Mann D.G. (1990). Diatoms: Biology and morphology of the genera. Cambridge University Press.
Round, F. E., & Bukhtiyarova, L. (1996). Four new genera based on Achnanthes (Achnanthidium) together with a redefinition of Achnanthidium. Diatom Research, 11 (2), 345–361. https://doi.org/10.1080/0269249X.1996.9705389 Round F. E. Bukhtiyarova L. (1996). Four new genera based on Achnanthes (Achnanthidium) together with a redefinition of Achnanthidium. Diatom Research, 11 (2), 345–361. https://doi.org/10.1080/0269249X.1996.9705389
Roy, S., & Keshri, J. P. (2016). Studies on four araphid taxa (Bacillariophyta) from Srikhola River, Eastern Himalaya. Phykos, 46 (1), 7–16. Roy S. Keshri J. P. (2016). Studies on four araphid taxa (Bacillariophyta) from Srikhola River, Eastern Himalaya. Phykos, 46 (1), 7–16.
Rumrich U, Lange-Bertalot H, Rumrich M. (2000). Diatomeen der Anden von Venezuela bis Patagonia/Tierra del Fuego und zwei weitere Beiträge. In H. Lange-Bertalot (Ed.), Iconographia Diatomologica. Annotated Diatomologica Micrographs, vol. 9, 1–673. Koeltz Scientific Books: Königstein. Rumrich U. Lange-Bertalot H Rumrich M. (2000). Diatomeen der Anden von Venezuela bis Patagonia/Tierra del Fuego und zwei weitere Beiträge. In Lange-Bertalot H. (Ed.), Iconographia Diatomologica. Annotated Diatomologica Micrographs, vol. 9, 1–673. Koeltz Scientific Books: Königstein.
Rusanov, A. G., Ector, L., Morales, E. A., Kiss, K. T., & Åcs, É. (2018). Morphometric analyses of Staurosira inflata comb. nov. (Bacillariophyceae) and the morphologically related Staurosira tabellaria from north-western Russia. European Journal of Phycology, 53 (3), 336–349. https://doi.org/10.10 80/09670262.2018.1452050 Rusanov A. G. Ector L. Morales E. A. Kiss K. T. Åcs É. (2018). Morphometric analyses of Staurosira inflata comb. nov. (Bacillariophyceae) and the morphologically related Staurosira tabellaria from north-western Russia. European Journal of Phycology, 53 (3), 336–349. https://doi.org/10.1080/09670262.2018.1452050
Sabater, S. (2009). Diatoms. Encyclopedia of Inland Waters. Academic Press., https://doi.org/10.1016/B978-012370626-3.00135-6 Sabater S. (2009). Diatoms. Encyclopedia of Inland Waters. Academic Press., https://doi.org/10.1016/B978-012370626-3.00135-6
Şahin, B., & Barınova, S. (2022). Role of Altitude in Formation of Diatom Diversity of High Mountain Protected Glacier Lakes in the Kaçkar Mountains National Park, Rize, Turkey. Environments (Basel, Switzerland), 9 (10), 127. https://doi.org/10.3390/environments9100127 Şahin B. Barınova S. (2022). Role of Altitude in Formation of Diatom Diversity of High Mountain Protected Glacier Lakes in the Kaçkar Mountains National Park, Rize, Turkey. Environments (Basel, Switzerland), 9 (10), 127. https://doi.org/10.3390/environments9100127
Sanchez, J. D., Bradbury, J. P., Bohor, B. F., & Coates, D. A. (1987). Diatoms and tonsteins as paleoenvironmental and paleodepositional indicators in a Miocene coal bed, Costa Rica. Palaios, 2 (2), 158–164. https://doi.org/10.2307/3514643 Sanchez J. D. Bradbury J. P. Bohor B. F. Coates D. A. (1987). Diatoms and tonsteins as paleoenvironmental and paleodepositional indicators in a Miocene coal bed, Costa Rica. Palaios, 2 (2), 158–164. https://doi.org/10.2307/3514643
Schneck, F., Torgan, L. C., & Schwarzbold, A. (2007). Epilithic diatom community in a high-altitude stream impacted by fish farming in southern Brazil. Acta Limnologica Brasiliensia, 19 (3), 341–355. Schneck F. Torgan L. C. Schwarzbold A. (2007). Epilithic diatom community in a high-altitude stream impacted by fish farming in southern Brazil. Acta Limnologica Brasiliensia, 19 (3), 341–355.
Schoeman, F. R. (1969). Diatoms from the Orange Free State (South Africa) and Lesotho. No. 2. Revista de Biologia, 7 (1–2), 35–74. Schoeman F. R. (1969). Diatoms from the Orange Free State (South Africa) and Lesotho. No. 2. Revista de Biologia, 7 (12), 35–74.
Schoeman, F. R. (1970). Diatoms from the Orange Free State, South Africa, and Lesotho I. Nova Hedwigia, Beihefte 31, 331–353. https://doi.org/10.1127/nova.beihefte/31/1970/331 Schoeman F. R. (1970). Diatoms from the Orange Free State, South Africa, and Lesotho I. Nova Hedwigia, Beihefte 31, 331–353. https://doi.org/10.1127/nova.beihefte/31/1970/331
Schoeman, F. R., & Archibald, R. E. M. (1988). Taxonomic notes on the diatoms (Bacillariophyceae) of the Gross Barmen thermal springs in South West Africa/Namibia. South African Journal of Botany, 54 (3), 221–256. https://doi.org/10.1016/S0254-6299(16)31322-9 Schoeman F. R. Archibald R. E. M. (1988). Taxonomic notes on the diatoms (Bacillariophyceae) of the Gross Barmen thermal springs in South West Africa/Namibia. South African Journal of Botany, 54 (3), 221–256. https://doi.org/10.1016/S0254-6299(16)31322-9
Siver, P. A., Hamilton, P. B., Stachura-Suchoples, K., & Kociolek, J. P. (2005). Diatoms of North America: The freshwater flora of Cape Cod, Massachusetts, USA. In: H. Lange-Bertalot (Ed.), Iconographia diatomologica-annotated diatom micrographs. Vol. 14, Koenigstein, Germany: Koeltz Scientific. Siver P. A. Hamilton P. B. Stachura-Suchoples K. Kociolek J. P. (2005). Diatoms of North America: The freshwater flora of Cape Cod, Massachusetts, USA. In: Lange-Bertalot H. (Ed.), Iconographia diatomologica-annotated diatom micrographs. Vol. 14, Koenigstein, Germany: Koeltz Scientific.
Smallman, S. C., & Brown, K. (2015). Introduction to international and global studies. Second Edition. Chapel Hill: University of North Carolina Press. Smallman S. C. Brown K. (2015). Introduction to international and global studies. Second Edition. Chapel Hill: University of North Carolina Press.
Smith, W. (1853). A Synopsis of British Diatomaceae, with remarks on their structure, function and distribution; and instructions for collecting and preserving specimens. The plates by Tuffen West. In two volumes. Vol. 1, John Van Voorst, Paternoster Row. Smith W. (1853). A Synopsis of British Diatomaceae, with remarks on their structure, function and distribution; and instructions for collecting and preserving specimens. The plates by Tuffen West. In two volumes. Vol. 1, John Van Voorst, Paternoster Row.
Smith, W. (1856). A synopsis of the British Diatomaceæ: with remarks on their structure, functions and distribution; and instructions for collecting and preserving specimens. Vol. 2, London: John van Voorst, Paternoster Row. Smith W. (1856). A synopsis of the British Diatomaceæ: with remarks on their structure, functions and distribution; and instructions for collecting and preserving specimens. Vol. 2, London: John van Voorst, Paternoster Row.
Smol, J. P., & Stoermer, E. F. (Eds.). (2010). The diatoms: applications for the environmental and earth sciences (2nd ed., p. 686). Cambridge University Press. https://doi.org/10.1017/CBO9780511763175 Smol J. P. Stoermer E. F. (Eds.). (2010). The diatoms: applications for the environmental and earth sciences (2nd ed., p. 686). Cambridge University Press. https://doi.org/10.1017/CBO9780511763175
Stockner, J. G. (1968). The ecology of a diatom community in a thermal stream. British Phycological Bulletin., 3 (3), 501–514. https://doi.org/10.1080/00071616800650101 Stockner J. G. (1968). The ecology of a diatom community in a thermal stream. British Phycological Bulletin., 3 (3), 501–514. https://doi.org/10.1080/00071616800650101
Stenger-Kovács, C., & Lengyel, E. (2015). Taxonomical and distribution guide of diatoms in soda pans of Central Europe. Studia Botanica Hungarica, 46 (Supl), 3–203. https://doi.org/10.17110/StudBot.2015.46.Suppl.3 Stenger-Kovács C. Lengyel E. (2015). Taxonomical and distribution guide of diatoms in soda pans of Central Europe. Studia Botanica Hungarica, 46 (Supl), 3–203. https://doi.org/10.17110/StudBot.2015.46.Suppl.3
Stevenson, R. J., Bothwell, M. L., & Lowe, R. L. (1996). Algal ecology: freshwater benthic ecosystems. Academic Press. Stevenson R. J. Bothwell M. L. Lowe R. L. (1996). Algal ecology: freshwater benthic ecosystems. Academic Press.
Stevenson, R., Pan, Y., & Van Dam, H. (2010). Assessing environmental conditions in rivers and streams with diatoms. In J. Smol & E. Stoermer (Eds.), The Diatoms: Applications for the Environmental and Earth Sciences, pp. 57–85. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511763175.005 Stevenson R. Pan Y. Van Dam H. (2010). Assessing environmental conditions in rivers and streams with diatoms. In Smol J. Stoermer E. (Eds.), The Diatoms: Applications for the Environmental and Earth Sciences, pp. 57–85. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511763175.005
Suxena, M. R., & Venkateswarlu, V. (1968). Algae of the Cho Oyu (E. Himalaya) expedition-I, Bacillariophyceae. Hydrobiologia, 32, 1–26. https://doi.org/10.1007/BF00179535 Suxena M. R. Venkateswarlu V. (1968). Algae of the Cho Oyu (E. Himalaya) expedition-I, Bacillariophyceae. Hydrobiologia, 32, 1–26. https://doi.org/10.1007/BF00179535
Suxena, M. R., & Venkateswarlu, V. (1970). Diatoms of the Hot springs of Badrinath, Himalayas. Nova Hedwigia. Beiheft, 31, 633–665. https://doi.org/10.1127/nova.beihefte/31/1970/633 Suxena M. R. Venkateswarlu V. (1970). Diatoms of the Hot springs of Badrinath, Himalayas. Nova Hedwigia. Beiheft, 31, 633–665. https://doi.org/10.1127/nova.beihefte/31/1970/633
Suxena, M. R. (1972). Algae of the Cho Oyo (E. Himalaya) Expedition-II, Bacillariophyceae-II. Nova Hedwigia, 23 (2–3), 415–426. Suxena M. R. (1972). Algae of the Cho Oyo (E. Himalaya) Expedition-II, Bacillariophyceae-II. Nova Hedwigia, 23 (2–3), 415–426.
Taylor, J. C., Cocquyt, C., Karthick, B., & Van de Vijver, B. (2014). Analysis of the type of Achnanthes exigua Grunow (Bacillariophyta) with the description of a new Antarctic diatom species. Fottea, 14 (1), 43–51. Taylor J. C. Cocquyt C. Karthick B. Van de Vijver B. (2014). Analysis of the type of Achnanthes exigua Grunow (Bacillariophyta) with the description of a new Antarctic diatom species. Fottea, 14 (1), 43–51.
Thacker, M., & Karthick, B. (2022). Response of Diatoms to the Changing Water Quality in the Myristica Swamps of the Western Ghats, India. Diversity, 14 (3), 202. https://doi.org/10.3390/d14030202 Thacker M. Karthick B. (2022). Response of Diatoms to the Changing Water Quality in the Myristica Swamps of the Western Ghats, India. Diversity, 14 (3), 202. https://doi.org/10.3390/d14030202
Trobajo, R., Rovira, L., Mann, D. G., & Cox, E. J. (2011). Effects of salinity on growth and on valve morphology of five estuarine diatoms. Phycological Research, 59 (2), 83–90. https://doi.org/10.1111/j.1440-1835.2010.00603.x Trobajo R. Rovira L. Mann D. G. Cox E. J. (2011). Effects of salinity on growth and on valve morphology of five estuarine diatoms. Phycological Research, 59 (2), 83–90. https://doi.org/10.1111/j.1440-1835.2010.00603.x
Tuji, A. (2005). Taxonomy of the Gomphoneis tetrastigmata species complex. Bulletin of the National Science Museum, Tokyo, Series B, 31 (3), 89–108. Tuji A. (2005). Taxonomy of the Gomphoneis tetrastigmata species complex. Bulletin of the National Science Museum, Tokyo, Series B, 31 (3), 89–108.
Tuji, A. (2016). Algae aquae dulcis Japonicae exsiccatae. Fascile [sic] 7. 1–42 pp. Tsukuba: National Museum of Nature and Science. Tuji A. (2016). Algae aquae dulcis Japonicae exsiccatae. Fascile [sic] 7. 1–42 pp. Tsukuba: National Museum of Nature and Science.
Van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–133. https://doi.org/10.1007/BF02334251 Van Dam H. Mertens A. Sinkeldam J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–133. https://doi.org/10.1007/BF02334251
Van de Vijver, B., & Cocquyt, C. (2009). Four new diatom species from La Calera hot spring in the Peruvian Andes (Colca Canyon). Diatom Research, 24 (1), 209–223. https://doi.org/10.1080/0269249X.2009.9705792 Van de Vijver B. Cocquyt C. (2009). Four new diatom species from La Calera hot spring in the Peruvian Andes (Colca Canyon). Diatom Research, 24 (1), 209–223. https://doi.org/10.1080/0269249X.2009.9705792
Van Heurck, H. (1880). Synopsis des Diatomées de Belgique Atlas. pp. pls I-XXX. Ducaju et Cie. (In French) Van Heurck H. (1880). Synopsis des Diatomées de Belgique Atlas. pp. pls I-XXX. Ducaju et Cie. (In French)
Van Heurck, H. (1882–1885). Types du Synopsis des Diatomées de Belgique. Déterminations, Notes et Diagnoses par M. A. Grunow. Séries I–XXII [slides Nr. 1–550]. Anvers: Édité par l’Auteur; p. 1–123. Van Heurck H. (1882–1885). Types du Synopsis des Diatomées de Belgique. Déterminations, Notes et Diagnoses par M. A. Grunow. Séries I–XXII [slides Nr. 1–550]. Anvers: Édité par l’Auteur; p. 1–123.
Vishnyakov, V. S., Kulikovskiy, M. S., Genkal, S. I., Dorofeyuk, N. I., Lange-Bertalot, H., & Kuznetsova, I. V. (2014). Taxonomy and geographical distribution of the diatom genus Epithemia Kützing in water bodies of Central Asia. Inland Water Biology, 7 (4), 318–330. https://doi.org/10.1134/S199508291404018X Vishnyakov V. S. Kulikovskiy M. S. Genkal S. I. Dorofeyuk N. I. Lange-Bertalot H. Kuznetsova I. V. (2014). Taxonomy and geographical distribution of the diatom genus Epithemia Kützing in water bodies of Central Asia. Inland Water Biology, 7 (4), 318–330. https://doi.org/10.1134/S199508291404018X
Vishnjakov, V. S., Kulikovskiy, M. S., Dorofeyuk, N. I., & Genkal, S. I. (2015a). Morphology and distribution of Cymbella neocistula Krammer and Cymbella nepalensis (Jüttner & Van de Vijver) Vishnjakov stat. nov. (Bacillariophyceae) in water ecosystems of South Siberia and Mongolia. Inland Water Biology, 8 (4), 325–333. https://doi.org/10.1134/S199508291504015X Vishnjakov V. S. Kulikovskiy M. S. Dorofeyuk N. I. Genkal S. I. (2015a). Morphology and distribution of Cymbella neocistula Krammer and Cymbella nepalensis (Jüttner & Van de Vijver) Vishnjakov stat. nov. (Bacillariophyceae) in water ecosystems of South Siberia and Mongolia. Inland Water Biology, 8 (4), 325–333. https://doi.org/10.1134/S199508291504015X
Vishnyakov, V. S., Kulikovskiy, M. S., Genkal, S. I., & Kuznetsova, I. V. (2015b). Comparative morphological characteristic of diatoms of genus Hannaea Patrick of the two largest lakes of the Baikal Rift Zone with a description of the new species. Inland Water Biology, 8 (3), 222–231. https://doi.org/10.1134/S1995082915030165 Vishnyakov V. S. Kulikovskiy M. S. Genkal S. I. Kuznetsova I. V. (2015b). Comparative morphological characteristic of diatoms of genus Hannaea Patrick of the two largest lakes of the Baikal Rift Zone with a description of the new species. Inland Water Biology, 8 (3), 222–231. https://doi.org/10.1134/S1995082915030165
Watanabe, T. (2005). Picture Book and Ecology of the Freshwater Diatoms. Uchida Rokakuho. Watanabe T. (2005). Picture Book and Ecology of the Freshwater Diatoms. Uchida Rokakuho.
Watanabe, T., A. Ueda, Y. Akaboshi, and N. Katano. (2011). Diatoms in Akita Prefecture, Northern Part of Japan, part 3–Diatoms from the Hot Spring of Oyasukyo gorge. Diatom, 27: 69–74 (in Japanese). https://doi: 10.11464/diatom.27.69 Watanabe T. Ueda A. Akaboshi Y. Katano N.. (2011). Diatoms in Akita Prefecture, Northern Part of Japan, part 3 - Diatoms from the Hot Spring of Oyasukyo gorge. Diatom, 27: 69–74 (in Japanese). https://doi:10.11464/diatom.27.69
Werum, M., & Lange-Bertalot, H. (2004). Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. Iconographia Diatomologica 13. A. R. G. Gantner Verlag K. G., Ruggell, Liechtenstein. Werum M. Lange-Bertalot H. (2004). Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. Iconographia Diatomologica 13. A. R. G. Gantner Verlag K. G., Ruggell, Liechtenstein.
Williams, D. M. & Round, F. E. (1987). Revision of the genus. Fragilaria. Diatom Research, 2 (2), 267–288. https://doi.org/10.1080/0269249X.1987.9705004 Williams D. M. Round F. E. (1987). Revision of the genus. Fragilaria. Diatom Research, 2 (2), 267–288. https://doi.org/10.1080/0269249X.1987.9705004
Williams, D. M. (2012). Diatoma moniliforme: Commentary, relationships and an appropriate name. Nova Hedwigia. Beiheft, 141, 255–261. Williams D. M. (2012). Diatoma moniliforme: Commentary, relationships and an appropriate name. Nova Hedwigia. Beiheft, 141, 255–261.
Witkowski, A., Lange-Bertalot, H., & Metzeltin, D. (2000). Diatom flora of marine coasts I. In: H. Lange-Bertalot, (Ed.), Iconographia Diatomologica. Annotated Diatom Monographs. Vol. 7. Diversity-TaxonomyIdentification. Königstein, Germany, Koeltz Scientific Books, 925 pp Witkowski A. Lange-Bertalot H. Metzeltin D. (2000). Diatom flora of marine coasts I. In: Lange-Bertalot H., (Ed.), Iconographia Diatomologica. Annotated Diatom Monographs. Vol. 7. Diversity-TaxonomyIdentification. Königstein, Germany, Koeltz Scientific Books, 925 pp
Wolfe, S.A., (2013). Cold-climate aeolian environments. In: Shroder, J. (Editor in Chief), Lancaster, N., Sherman, D.J., Baas, A.C.W. (Eds.), Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 11, Aeolian Geomorphology, pp. 375–394. https://doi.org/10.1016/B978-0-12-374739-6.00312-2 Wolfe S.A., (2013). Cold-climate aeolian environments. In: Shroder J. Lancaster N. Sherman D.J. Baas A.C.W. (Eds.), Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 11, Aeolian Geomorphology, pp. 375–394. https://doi.org/10.1016/B978-0-12-374739-6.00312-2
You, Q., Kociolek, J. P., & Wang, Q. (2013). New Gomphoneis Cleve (Bacillariophyceae: Gomphonemataceae) species from Xinjiang Province, China. Phytotaxa, 103(1), 1. https://doi.org/10.11646/phytotaxa.103.1.1 PMID:24363565 You Q. Kociolek J. P. Wang Q. (2013). New Gomphoneis Cleve (Bacillariophyceae: Gomphonemataceae) species from Xinjiang Province, China. Phytotaxa, 103 (1), 1. https://doi.org/10.11646/phytotaxa.103.1.1 PMID: 24363565
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
The present study is a preliminary taxonomic survey of diatom assemblages from one of the highest mountain ranges in the Western Himalayas – Ladakh. 37 samples were collected from 19 different sampling sites at altitudes ranging from 3100–4552 amsl. The diatom communities were representative of habitats such as lakes, streams, and hot springs from high altitudes. The dominant diatoms are studied using light microscopy and identified using valve morphometrics. The study enlists a total of 74 taxa belonging to 40 genera along with photomicrographic plates. Commonly-found species of high-altitude hot springs habitats were Gogorevia exilis and Denticula thermaloides. Reimeria sinuata, Fragilaria vaucheriae, Gomphonella cf. olivacea, Encyonema ventricosum, Lindavia biswashanti, Diatoma moniliformis, and Denticula valida were commonly occurring species in stream, river and lake habitats. Further analysis and putative novel species from this high-altitude environment will be described in future publications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Biodiversity and Paleobiology Group, Agharkar Research Institute, G.G. Agarkar Road, Pune - 411004, Maharashtra, India; Affiliated to Department of Botany, Savitribai Phule Pune University, Pune, Ganeshkind, Pune - 411007, Maharashtra, India
2 Biodiversity and Paleobiology Group, Agharkar Research Institute, G.G. Agarkar Road, Pune - 411004, Maharashtra, India
3 Gubbi Labs, Gubbi - 572216, Karnataka, India