It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2–700 cm−1 (0.06–21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
3 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America