Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The ship exhaust sniffing unmanned aerial vehicle (UAV) system can be applied to monitor vessel emissions in emission control areas (ECAs) to improve the efficiency of maritime law enforcement and reduce ship pollution. To solve the problems of large size, heavy weight and high cost of ship exhaust sniffing sensors, in this paper, a unique diffused mini-sniffing sensor was designed, which provides a low-cost, lightweight, and highly adaptable solution for ship exhaust sniffing UAV. To verify the measurement accuracy of the system, a large number of on-site tests were performed based in the mouth of the Yangtze River, and some cases of violation of the fuel sulfur content (FSC) were verified and punished. Maritime law enforcement officers boarded the ship to take oil samples from eight suspected ships and sent them to the laboratory for testing. The results showed that the FSCs of the eight ships in chemical inspection were all greater than the regulatory limit 0.5% (m/m) of the International Maritime Organization (IMO). The system enables authorities to monitor emissions using rotary UAVs equipped with diffused mini-sniffing sensors to measure the FSC of navigating ships, which couple hardware and operational software with a dedicated lab service to produce highly reliable measurement results. The system offers an effective tool for screening vessel compliance.

Details

Title
A Diffused Mini-Sniffing Sensor for Monitoring SO2 Emissions Compliance of Navigating Ships
Author
Deng, Mengtao 1 ; Peng, Shitao 1 ; Xie, Xin 2 ; Jiang, Zhi 3 ; Hu, Jianbo 1 ; Qi, Zhaoyu 1 

 Key Laboratory of Environmental Protection Technology on Water Transport, Ministry of Transport, National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China; [email protected] (M.D.); [email protected] (J.H.); [email protected] (Z.Q.) 
 Shanghai Maritime Safety Administration of the People’s Republic of China, Shanghai 200086, China; [email protected] 
 Baoshan Maritime Safety Administration of the People’s Republic of China, Shanghai 201999, China; [email protected] 
First page
5198
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694082860
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.