Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Archaea is identified as the key link in the interaction between gut microbiota and host metabo-lism. Studies on human and mice have reported archaea, especially methanogenic archaea, makes an important impact on the energy harvesting capacity of the host by improving fermentation. But, in pigs, the metabolic potential of archaea at different production stages are still largely unknown. Herein, we re-analyzed 276 metagenomic samples to explore the diversity, composi-tion, and potential functions of archaea in pigs. The results showed significant regional variations in archaeal composition. Furthermore, the Metacyc pathway related to hydrogen consumption (METHANOGENESIS-PWY) was only observed in archaeal reads, and archaea may be involved in carbohydrate metabolism and de novo synthesis of some kinds of essential amino acid. Overall, metagenomic re-analysis revealed that the composition and functional potential of archaea in the swine gut and suggested that archaea may make an important function in pigs.

Abstract

Archaea are an essential class of gut microorganisms in humans and animals. Despite the substantial progress in gut microbiome research in the last decade, most studies have focused on bacteria, and little is known about archaea in mammals. In this study, we investigated the composition, diversity, and functional potential of gut archaeal communities in pigs by re-analyzing a published metagenomic dataset including a total of 276 fecal samples from three countries: China (n = 76), Denmark (n = 100), and France (n = 100). For alpha diversity (Shannon Index) of the archaeal communities, Chinese pigs were less diverse than Danish and French pigs (p < 0.001). Consistently, Chinese pigs also possessed different archaeal community structures from the other two groups based on the Bray–Curtis distance matrix. Methanobrevibacter was the most dominant archaeal genus in Chinese pigs (44.94%) and French pigs (15.41%), while Candidatus methanomethylophilus was the most predominant in Danish pigs (15.71%). At the species level, the relative abundance of Candidatus methanomethylophilus alvus, Natrialbaceae archaeon XQ INN 246, and Methanobrevibacter gottschalkii were greatest in Danish, French, and Chinese pigs with a relative abundance of 14.32, 11.67, and 16.28%, respectively. In terms of metabolic potential, the top three pathways in the archaeal communities included the MetaCyc pathway related to the biosynthesis of L-valine, L-isoleucine, and isobutanol. Interestingly, the pathway related to hydrogen consumption (METHANOGENESIS-PWY) was only observed in archaeal reads, while the pathways participating in hydrogen production (FERMENTATION-PWY and PWY4LZ-257) were only detected in bacterial reads. Archaeal communities also possessed CAZyme gene families, with the top five being AA3, GH43, GT2, AA6, and CE9. In terms of antibiotic resistance genes (ARGs), the class of multidrug resistance was the most abundant ARG, accounting for 87.41% of archaeal ARG hits. Our study reveals the diverse composition and metabolic functions of archaea in pigs, suggesting that archaea might play important roles in swine nutrition and metabolism.

Details

Title
The Diversity, Composition, and Metabolic Pathways of Archaea in Pigs
Author
Deng, Feilong 1 ; Li, Yushan 2 ; Peng, Yunjuan 2 ; Wei, Xiaoyuan 3   VIAFID ORCID Logo  ; Wang, Xiaofan 3 ; Howe, Samantha 3 ; Yang, Hua 4 ; Xiao, Yingping 4 ; Li, Hua 1   VIAFID ORCID Logo  ; Zhao, Jiangchao 3   VIAFID ORCID Logo  ; Li, Ying 1 

 Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; [email protected] (F.D.); [email protected] (H.L.); School of Life Science and Engineering, Foshan University, Foshan 528225, China; [email protected] (Y.L.); [email protected] (Y.P.) 
 School of Life Science and Engineering, Foshan University, Foshan 528225, China; [email protected] (Y.L.); [email protected] (Y.P.) 
 Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] (X.W.); [email protected] (X.W.); [email protected] (S.H.); [email protected] (J.Z.) 
 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; [email protected] (H.Y.); [email protected] (Y.X.) 
First page
2139
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2554362609
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.