Full Text

Turn on search term navigation

© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

SPAK (STE20/SPS1‐related proline/alanine‐rich kinase) regulates Na+ and Cl reabsorption in the distal convoluted tubule, and possibly in the thick ascending limb of Henle. This kinase phosphorylates and activates the apical Na‐Cl cotransporter in the DCT. Western blot analysis reveals that SPAK in kidney exists as a full‐length protein as well as shorter fragments that might affect NKCC2 function in the TAL. Recently, we showed that kidney lysates exerts proteolytic activity towards SPAK, resulting in the formation of multiple SPAK fragments with possible inhibitory effects on the kinase. The proteolytic activity is mediated by a Zn2+ metalloprotease inhibited by 1,10‐phenanthroline, DTT, and EDTA. Size exclusion chromatography demonstrated that the protease was a high‐molecular‐weight protein. Protein identification by mass‐spectrometry analysis after ion exchange and size exclusion chromatography identified multiple proteases as possible candidates and aspartyl aminopeptidase, DNPEP, shared all the properties of the kidney lysate activity. Furthermore, recombinant GST‐DNPEP produced similar proteolytic pattern. No mouse knockout model was, however, available to be used as negative control. In this study, we used a DNPEP‐mutant mouse generated by EUCOMM as well as a novel CRISPR/cas9 mouse knockout to assess the activity of their kidney lysates towards SPAK. Two mouse models had to be used because different anti‐DNPEP antibodies provided conflicting data on whether the EUCOMM mouse resulted in a true knockout. We show that in the absence of DNPEP, the kidney lysates retain their ability to cleave SPAK, indicating that DNPEP might have been misidentified as the protease behind the kidney lysate activity, or that the aspartyl aminopeptidase might not be the only protease cleaving SPAK in kidney.

Details

Title
DNPEP is not the only peptidase that produces SPAK fragments in kidney
Author
Koumangoye, Rainelli 1 ; Delpire, Eric 1   VIAFID ORCID Logo 

 Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 
Section
Original Research
Publication year
2017
Publication date
Nov 2017
Publisher
John Wiley & Sons, Inc.
e-ISSN
2051817X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1977874920
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.