It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper we propose PIICM, a probabilistic framework for dose–response prediction in high-throughput drug combination datasets. PIICM utilizes a permutation invariant version of the intrinsic co-regionalization model for multi-output Gaussian process regression, to predict dose–response surfaces in untested drug combination experiments. Coupled with an observation model that incorporates experimental uncertainty, PIICM is able to learn from noisily observed cell-viability measurements in settings where the underlying dose–response experiments are of varying quality, utilize different experimental designs, and the resulting training dataset is sparsely observed. We show that the model can accurately predict dose–response in held out experiments, and the resulting function captures relevant features indicating synergistic interaction between drugs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer