Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The segmentation algorithm for buildings and waters is extremely important for the efficient planning and utilization of land resources. The temporal and space range of remote sensing pictures is growing. Due to the generic convolutional neural network’s (CNN) insensitivity to the spatial position information in remote sensing images, certain location and edge details can be lost, leading to a low level of segmentation accuracy. This research suggests a double-branch parallel interactive network to address these issues, fully using the interactivity of global information in a Swin Transformer network, and integrating CNN to capture deeper information. Then, by building a cross-scale multi-level fusion module, the model can combine features gathered using convolutional neural networks with features derived using Swin Transformer, successfully extracting the semantic information of spatial information and context. Then, an up-sampling module for multi-scale fusion is suggested. It employs the output high-level feature information to direct the low-level feature information and recover the high-resolution pixel-level features. According to experimental results, the proposed networks maximizes the benefits of the two models and increases the precision of semantic segmentation of buildings and waters.

Details

Title
Double Branch Parallel Network for Segmentation of Buildings and Waters in Remote Sensing Images
Author
Chen, Jing 1 ; Xia, Min 1   VIAFID ORCID Logo  ; Wang, Dehao 1 ; Lin, Haifeng 2   VIAFID ORCID Logo 

 Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, B-DAT, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China 
First page
1536
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791699406
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.