Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Studies have shown that driver fatigue or unpleasant emotions significantly increase driving risks. Detecting driver emotions and fatigue states and providing timely warnings can effectively minimize the incidence of traffic accidents. However, existing models rarely combine driver emotion and fatigue detection, and there is space to improve the accuracy of recognition. In this paper, we propose a non-invasive and efficient detection method for driver fatigue and emotional state, which is the first time to combine them in the detection of driver state. Firstly, the captured video image sequences are preprocessed, and Dlib (image open source processing library) is used to locate face regions and mark key points; secondly, facial features are extracted, and fatigue indicators, such as driver eye closure time (PERCLOS) and yawn frequency are calculated using the dual-threshold method and fused by mathematical methods; thirdly, an improved lightweight RM-Xception convolutional neural network is introduced to identify the driver’s emotional state; finally, the two indicators are fused based on time series to obtain a comprehensive score for evaluating the driver’s state. The results show that the fatigue detection algorithm proposed in this paper has high accuracy, and the accuracy of the emotion recognition network reaches an accuracy rate of 73.32% on the Fer2013 dataset. The composite score calculated based on time series fusion can comprehensively and accurately reflect the driver state in different environments and make a contribution to future research in the field of assisted safe driving.

Details

Title
Driver Emotion and Fatigue State Detection Based on Time Series Fusion
Author
Shang, Yucheng 1   VIAFID ORCID Logo  ; Yang, Mutian 2 ; Cui, Jianwei 1 ; Cui, Linwei 1   VIAFID ORCID Logo  ; Huang, Zizheng 1 ; Li, Xiang 1 

 Institute of Instrument Science and Engineering, Southeast University, Nanjing 210096, China 
 School of Information Science and Engineering, China University of Petroleum, Beijing 266580, China 
First page
26
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761112895
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.