Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the advantages of their drive configuration form, skid-steering vehicles with independent wheel drive systems are widely used in various special applications. However, obtaining a reasonable distribution of the driving torques for the coordinated control of independent driving wheels is a challenging problem. In this paper, we propose a torque distribution strategy based on the Knowledge-Assisted Deep Deterministic Policy Gradient (KA-DDPG) algorithm, in order to minimize the desired value tracking error as well as achieve the longitudinal speed and yaw rate tracking control of skid-steering vehicles. The KA-DDPG algorithm combines knowledge-assisted learning methods with the DDPG algorithm, within the framework of knowledge-assisted reinforcement learning. To accelerate the learning process of KA-DDPG, two assisted learning methods are proposed: a criteria action method and a guiding reward method. The simulation results obtained, considering different scenarios, demonstrate that the KA-DDPG-based torque distribution strategy allows a skid-steering vehicle to achieve high performance, in tracking the desired value. In addition, further simulation results, also, demonstrate the contributions of knowledge-assisted learning methods to the training process of KA-DDPG: the criteria action method speeds up the learning speed by reducing the agent’s random action selection, while the guiding reward method achieves the same result by sharpening the reward function.

Details

Title
Driving Torque Distribution Strategy of Skid-Steering Vehicles with Knowledge-Assisted Reinforcement Learning
Author
Dai, Huatong 1 ; Chen, Pengzhan 2 ; Yang, Hui 1 

 School of Electrical Engineering and Automation, East China Jiaotong University, Nanchang 330013, China; [email protected] 
 School of Intelligent Manufacture, Taizhou University, Taizhou 318000, China; [email protected] 
First page
5171
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670081897
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.