Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vegetation is one of the most important indicators of climate change, as it can show regional change in the environment. Vegetation health is affected by various factors, including drought, which has cumulative and time-lag effects on vegetation response. However, the cumulative and time-lag effects of drought on different terrestrial vegetation in China are still unclear. To address this issue, this study examined the cumulative and time-lag effects of drought on vegetation from 2001 to 2020 using the Standardized Precipitation Evapotranspiration Index (SPEI) in the Global SPEI database and the Normalized Difference Vegetation Index (NDVI) in MOD13A3. Based on Sen-Median trend analysis and the Mann–Kendall test, the change trend and significance of the NDVI from 2001 to 2020 were explored. The Pearson correlation coefficient was used to analyze the correlation between the SPEI and NDVI at each cumulative scale and time-lag scale and to further analyze the cumulative and time-lag effects of drought on vegetation. The results show the following: (1) The NDVI value increased at a rate of 0.019/10 years, and the increased area of the NDVI accounted for 80.53% of mainland China, with a spatial trend of low values in the west and high values in the east. (2) The average SPEI cumulative time scale most relevant to the NDVI was 7.3 months, and the cumulative effect demonstrated a high correlation at the scale of 9–12 months and revealed different distributions in different areas. The cumulative effect was widely distributed at the 9-month scale, followed by the 12-month scale. The correlation coefficients of cumulative effects between the SPEI and NDVI for cropland, woodland and grassland peaked at 9 months. (3) The average SPEI time-lag scale for the NDVI was 6.9 months, and the time-lag effect had the highest correlation coefficient at the 7-month scale. The strongest time-lag effect for cropland and grassland was seen at 7 months, while the strongest time-lag effect for woodland was seen at 6 months. Woodland had a lower time-lag effect than grassland at different scales. The research results are significant for their use in aiding the scientific response to drought disasters and making decisions for climate change precautions.

Details

Title
Drought-Related Spatiotemporal Cumulative and Time-Lag Effects on Terrestrial Vegetation across China
Author
Wei, Wei 1   VIAFID ORCID Logo  ; Liu, Ting 1   VIAFID ORCID Logo  ; Zhou, Liang 2 ; Wang, Jiping 1 ; Peng, Yan 1 ; Xie, Binbin 3 ; Zhou, Junju 1 

 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China 
 Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China 
 School of Urban Management, Lanzhou City University, Lanzhou 730070, China 
First page
4362
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869574844
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.