Full Text

Turn on search term navigation

© 2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy. This issue was addressed by increasing the Fab molecular weight above the glomerular filtration threshold through the duplication of the constant domains, in tandem (DCD-1) or reciprocally swapped (DCD-2). The two newly engineered molecules showed biochemical properties comparable to the original MvDN30 in vitro, acting as full Met antagonists, impairing Met phosphorylation and activation of downstream signaling pathways. As a consequence, Met-mediated biological responses were inhibited, including anchorage-dependent and -independent cell growth. In vivo DCD-1 and DCD-2 showed a pharmacokinetic profile significantly improved over the original MvDN30, doubling the circulating half-life and reducing the clearance. In pre-clinical models of cancer, generated by injection of tumor cells or implant of patient-derived samples, systemic administration of the engineered molecules inhibited the growth of Met-addicted tumors.

Details

Title
Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody
Author
Cignetto, Simona 1 ; Modica, Chiara 1 ; Chiriaco, Cristina 2 ; Fontani, Lara 2 ; Milla, Paola 3 ; Michieli, Paolo 1 ; Comoglio, Paolo M 1 ; Vigna, Elisa 1 

 Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy; University of Turin, Department of Oncology, Str Prov 142, 10060 Candiolo, Italy 
 Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy 
 University of Turin, Department of Science and Drug Technology, Via P. Giuria 9, 10125 Turin, Italy 
Pages
938-948
Section
Articles
Publication year
2016
Publication date
Jun 2016
Publisher
John Wiley & Sons, Inc.
ISSN
15747891
e-ISSN
18780261
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2299185439
Copyright
© 2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.