Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nanotechnology, including self-aggregated nanoparticles, has shown high effectiveness in the treatment of solid tumors. To overcome the limitations of conventional cancer therapies and promote therapeutic efficacy, a combination of PDT and chemotherapy can be considered an effective strategy for cancer treatment. This study presents the development of tumor-targeting polysialic acid (PSA) nanoparticles for chemo-PDT to increase the cellular uptake and cytotoxic effect in cancer cells. Chlorin e6 (Ce6), a photosensitizer, and the iRGD peptide (sequence; cCRGDKGPDC) were conjugated to the amine of N-deacetylated PSA. They generate reactive oxygen species (ROS), especially singlet oxygen (1O2), and target integrin αvβ3 on the cancer cell surface. To offer a chemotherapeutic effect, doxorubicin (Dox) was assembled into the core of hydrophobically modified PSA by connecting it with Ce6; this was followed by its sustained release from the nanoparticles. These nanoparticles are able to generate ROS under 633 nm visible-light irradiation, resulting in the strong cytotoxicity of Dox with anticancer effects in HCT116 cells. PSA nanoparticles with the dual effect of chemo-PDT improve conventional PDT, which has a poor ability to deliver photosensitizers to cancer cells. Using their combination with Dox chemotherapy, rapid removal of cancer cells can be expected.

Details

Title
Dual Effect of Chemo-PDT with Tumor Targeting Nanoparticles Containing iRGD Peptide
Author
Gye Lim Kim 1 ; Park, Byeongmin 1 ; Eun Hyang Jang 1 ; Gu, Jaeun 1 ; Seo Ra Seo 2 ; Cheung, Hyein 1 ; Hyo Jung Lee 2 ; Lee, Sangmin 3 ; Jong-Ho, Kim 3   VIAFID ORCID Logo 

 College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea 
 Department of Regulatory Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea 
 College of Pharmacy and Bionanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Regulatory Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea 
First page
614
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779641604
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.