Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A large headframe is the core structure of a mine hoisting system. In the traditional design, only the static analysis under load is considered, resulting in the resonance phenomenon of the large headframe in later applications. In order to restrain the resonance phenomenon, a novel method for dynamic characteristic analysis and structural optimization design of a large headframe is proposed. First, the eigenfrequencies and vibration modes of the large headframe were obtained through modal analysis. The results showed that the numerical values of the multi-order eigenfrequencies of the system are relatively close. When subjected to alternating loads of similar frequencies, a large headframe is prone to the resonance phenomenon. Second, the steady-state vibration response of the large headframe was obtained through harmonic response analysis. The results showed that when the frequency of the alternating load is close to the first-order eigenfrequency, the vibration amplitude increases. Meanwhile, the fourth-order and the fifth-order eigenfrequencies are very close. When subjected to alternating loads of similar frequencies, the fourth-order and the fifth-order vibration modes of the headframe will be excited simultaneously. At this time, the headframe will have a strong resonance, which may cause structural damage and other problems. Finally, based on the above analysis, nine different structural optimization schemes are proposed in this paper. Through modal analysis and harmonic response analysis, the nine schemes were compared and analyzed, and the optimal scheme was eventually determined as scheme 9. The method proposed in this paper provides a new concept for the structural optimization design of a large mining headframe, and it has great significance for restraining the resonance phenomenon and ensuring the safety of mining operations.

Details

Title
Dynamic Characteristic Analysis and Structural Optimization Design of the Large Mining Headframe
Author
Liu, Yue 1   VIAFID ORCID Logo  ; Huang, Min 1 ; An, Qi 2 ; Long, Bai 1   VIAFID ORCID Logo  ; Deyong Shang 3   VIAFID ORCID Logo 

 Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100192, China; [email protected] (Y.L.); [email protected] (L.B.); Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China 
 Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China; [email protected] 
 School of Mechanical Electronic & Information Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China; [email protected] 
First page
510
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693979033
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.