You may have access to the free features available through My Research. You can save searches, save documents, create alerts and more. Please log in through your library or institution to check if you have access.
You may have access to different export options including Google Drive and Microsoft OneDrive and citation management tools like RefWorks and EasyBib. Try logging in through your library or institution to get access to these tools.
ReferencesAkmaev, R. A. (2011). Whole atmosphere modeling: Connecting terrestrial and space weather. Reviews of Geophysics, 49, RG4004. https://doi.org10.1029/2011RG000364Anderson, C., Davies, T., Conde, M., Dyson, P., & Kosch, M. J. (2011). Spatial sampling of the thermospheric vertical wind field at auroral latitudes. Journal of Geophysical Research, 116, A06320. https://doi.org10.1029/2011JA016485Andrews, D. G., Holton, J. R., & Leovy, C. B. (1987). Middle Atmosphere Dynamics. San Diego, CA: Academic Press.Auroux, D., & Blum, J. (2008). A nudging-based data assimilation method: The Back and Forth Nudging (BFN) algorithm. Nonlinear Processes in Geophysics, 15, 305–319. https://doi.org10.5194/npg-15-305-2008Baer, F., & Tribbia, J. J. (1977). On complete filtering of gravity modes through nonlinear initialization. Monthly Weather Review, 105, 1536–1539. https://doi.org10.1175/1520-0493(1977)105<1536:OCFOGM>2.0.CO;2Bao, J. W., & Errico, R. M. (1997). An adjoint examination of a nudging method for data assimilation. Monthly Weather Review, 125, 1355–1373. https://doi.org10.1175/1520-0493(1997)125<1355:AAEOAN>2.0.CO;2Bloom, S. C., Takacs, L. L., daSilva, A. M., & Ledvina, D. (1996). Data assimilation using incremental analysis updates. Monthly Weather Review, 124, 1256–1271. https://doi.org10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., et al. (2015). MERRA-2: Initial evaluation of the climate (NASA Tech. Rep.), Series on global modeling and data sssimilation, NASA/TM-2015-104606 (Vol. 43). Greenbelt, Maryland: NASA Goddard Space Flight Center.Bourchtein, A., & Bourchtein, L. (2010). On ellipticity of balance equations for atmospheric dynamics. Journal of Computational and Applied Mathematics, 234, 1017–1026. https://doi.org10.1016/j.cam.2009.03.011Brakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., & Manney, G. L. (2013). Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004–2005. Journal of Geophysical Research: Atmospheres, 118, 2673–2688. https://doi.org10.1002/jgrd.50226Burns, A. G., Wang, W., Solomon, S. C., & Qian, L. (2014). Energetics and composition in the thermosphere. In J.Huba, et al. (Eds.), Modeling the Ionosphere-Thermosphere System (pp. 39–48). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org10.1002/9781118704417.ch4Cacuci, D. G., Navon, I. M., & Ionescu-Bujor, M. (2014). Basic principles of 4-D VAR. In Computational Methods for Data Evaluation and Assimilation (pp. 183–225). Florida: CRC Press.Charney, J. G., & Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. Journal of Geophysical Research, 66, 83–109. https://doi.org10.1029/JZ066i001p00083Daley, R. (1991). Atmospheric Data Analysis. New York: Cambridge University Press.Davies, H. C., & Turner, R. E. (1977). Updating prediction models by dynamical relaxation: An examination of the technique. Quarterly Journal of the Royal Meteorological Society, 103, 225–245. https://doi.org10.1002/qj.49710343602Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. https://doi.org10.1002/qj.828Deng, Y., & Ridley, A. J. (2012). The global ionosphere-thermosphere model and the non-hydrostatic processes. In Modeling the Ionosphere-Thermosphere System, Geophysical Monograph Series (Vol. 201, pp. 85–100). Washington, DC: American Geophysical Union https://doi.org10.1029/2012GM001296Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., et al. (2012). CAM-SE: A scalable spectral element dynamical core for the Community Atmospheric Model. International Journal of High Performance Computing Applications, 26, 74–89. https://doi.org10.1177/1094342011428142Dill, L. H. (2004). Representation of ice geometry by parametric functions: Construction of approximating NURBS curves and quantification of ice roughness—Year 1: Approximating NURBS curves (Tech. Rep. NASA/CR-2004-213071). Ohio: NASA Glenn Research Center.Dolinar, E. K., Dong, X., & Xi, B. (2016). Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations. Climate Dynamics, 46, 2123–2144. https://doi.org10.1007/s00382-015-2693-zDrob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., et al. (2008). An empirical model of the Earth's horizontal wind fields: HWM07. Journal of Geophysical Research, 113, A12304. https://doi.org10.1029/2008JA013668Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., et al. (2015). An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth and Space Science, 2, 301–319. https://doi.org10.1002/2014EA000089Drob, D. P., Picone, J. M., & Garcés, M. (2003). Global morphology of infrasound propagation. Journal of Geophysical Research, 108(D21), 4680. https://doi.org10.1029/2002JD003307Dunkerton, T. (1978). On the mean meridional mass motions of the stratosphere and mesosphere. Journal of the Atmospheric Sciences, 35, 2325–2333. https://doi.org10.1175/1520-0469(1978)035<2325:OTMMMM>2.0.CO;2Durran, D. R. (1989). Improving the anelastic approximation. Journal of the Atmospheric Sciences, 46, 1453–1461. https://doi.org10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2Durran, D. (2008). A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. Journal of Fluid Mechanics, 601, 365–379. https://doi.org10.1017/S0022112008000608Eckemann, S. D., Hoppel, K. W., Coy, L., McCormack, J. P., Siskind, D. E., Nielsen, K., et al. (2009). High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 531–551. https://doi.org10.1016/j.jastp.2008.09.036Emmert, J. T., Drob, D. P., Shepherd, G. G., Hernandez, G., Jarvis, M. J., Meriwether, J. W., et al. (2008). DWM07 global empirical model of upper thermospheric storm-induced disturbance winds. Journal of Geophysical Research, 113, A11319. https://doi.org10.1029/2008JA013541Errico, R. (1982). Normal mode initialization and the generation of gravity waves by quasi-geostrophic forcing. Journal of the Atmospheric Sciences, 39, 573–586. https://doi.org10.1175/1520-0469(1982)039<0573:NMIATG>2.0.CO;2Forbes, J. M. (2007). Dynamics of the thermosphere. Journal of the Meteorological Society of Japan, 85B, 193–213. https://doi.org10.2151/jmsj.85B.193Ford, R., McIntyre, M. E., & Norton, W. A. (2000). Balance and the slow quasimanifold: Some explicit results. Journal of the Atmospheric Sciences, 57, 1236–1254. https://doi.org10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., et al. (2017). Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics, 17, 1417–1452. https://doi.org10.5194/acp-17-1417-2017Fuller-Rowell, T. J. (1995). The dynamics of the lower thermosphere. In R. M.Johnson & T. L.Killeen (Eds.), The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (pp. 23–36). Washington, DC: American Geophysical Union. https://doi.org10.1029/GM087p0023Fuller-Rowell, T. (2013). Physical characteristics and modeling of Earth's thermosphere. In J.Huba, et al. (Eds.), Modeling the Ionosphere-Thermosphere System (pp. 13–27). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org10.1002/9781118704417.ch2Haseler, J., & Sakellarides, G. (1986). Description of the ECMWF model post processing system (Tech. Memo. 121). UK.Hedin, A. E. (1991). Extension of the MSIS thermosphere model into the middle and lower atmosphere. Journal of Geophysical Research, 96, 1159–1172. https://doi.org10.1029/90JA02125Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., et al. (1996). Empirical wind model for the upper, middle and lower atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 58, 1421–1447. https://doi.org10.1016/0021-9169(95)00122-0Hoke, J. E., & Anthes, R. A. (1976). The initialization of numerical models by a dynamic-initialization technique. Monthly Weather Review, 104, 1551–1556. https://doi.org10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2Hoke, J. E., & Anthes, R. A. (1977). Dynamic initialization of a three-dimensional primitive-equation model of Hurricane Alma of 1962. Monthly Weather Review, 105, 1266–1280. https://doi.org10.1175/1520-0493(1977)105<1266:DIOATD>2.0.CO;2Hoskins, B. J., McIntyre, M. E., & Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877–946. https://doi.org10.1002/qj.49711147002Houghton, D. D. (1968). Derivation of the elliptic condition for the balance equation in spherical coordinates. Journal of the Atmospheric Sciences, 25, 927–928. https://doi.org10.1175/1520-0469(1968)025<0927:DOTECF>2.0.CO;2Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation, and Predictability. New York: Cambridge University Press.Kasahara, A. (1974). Various vertical coordinate systems used for numerical weather prediction. Monthly Weather Review, 102, 509–522. https://doi.org10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2Kasahara, A. (1982). Significance of non-elliptic regions in balanced flows of the tropical atmosphere. Monthly Weather Review, 110, 1956–1967. https://doi.org10.1175/1520-0493(1982)110<1956:SONERI>2.0.CO;2Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., & Anstey, J. A. (2016). Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses. Atmospheric Chemistry and Physics, 16, 6681–6699. https://doi.org10.5194/acp-16-6681-2016Krishnamurti, T. N., Xue, J., Bedi, H. S., Ingles, K., & Oosterhof, D. (1991). Physical initialization for numerical weather prediction over the tropics. Tellus, 43A, 53–81. https://doi.org10.1034/j.1600-0870.1991.t01-3-00007.xLakshmivarahan, S., & Lewis, J. M. (2013). Nudging methods: A critical overview. In S. K.Park & L.Xu (Eds.), Data assimilation for atmospheric, oceanic and hydrological applications (Vol. II, pp. 27–57). Berlin, Germany: Springer-Verlag. https://doi.org10.1007/978-3-642-35088-7_2Larsen, M. F., & Meriwether, J. W. (2012). Vertical winds in the thermosphere. Journal of Geophysical Research, 117, A09319. https://doi.org10.1029/2012JA017843Leith, C. E. (1980). Nonlinear normal mode initialization and quasi-geostrophic theory. Journal of the Atmospheric Sciences, 37, 958–968. https://doi.org10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2Lin, S.-J. (2004). A “vertically Lagrangian” finite-volume dynamical core for global models. Monthly Weather Review, 132, 2293–2397. https://doi.org10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2Lipps, F. B., & Hemler, R. S. (1982). A scale analysis of deep moist convection and some related numerical calculations. Journal of the Atmospheric Sciences, 39, 2192–2210. https://doi.org10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2Liu, H.-L., Marsh, D. R., She, C.-Y., Wu, Q., & Xu, J. (2009). Momentum balance and gravity wave forcing in the mesosphere and lower thermosphere. Geophysical Research Letters, 36, L07805. https://doi.org10.1029/2009GL037252Long, D. L., Jackson, D. R., Thuburn, J., & Mathison, C. (2013). Validation of Met Office upper stratospheric and mesospheric analyses. Quarterly Journal of the Royal Meteorological Society, 139, 1214–1228. https://doi.org10.1002/qj.2031Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112, 1177–1194. https://doi.org10.1002/qj.49711247414Lorenc, A. C., Bell, R. S., & Macpherson, B. (1991). The Meteorological Office analysis correction data assimilation scheme. Quarterly Journal of the Royal Meteorological Society, 117, 59–89. https://doi.org10.1002/qj.49711749704Lorenz, E. N. (1980). Attractor sets and quasi-geostrophic equilibrium. Journal of the Atmospheric Sciences, 37, 1685–1699. https://doi.org10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2Lorenz, E. N. (1986). On the existence of a slow manifold. Journal of the Atmospheric Sciences, 43, 1547–1557. https://doi.org10.1175/1520-0469(1986)043<1547:OTEOAS>2.0.CO;2Manney, G. L., & Randel, W. J. (1993). Instability at the winter stratopause: A mechanism for the 4-day wave. Journal of the Atmospheric Sciences, 50, 3928–3938. https://doi.org10.1175/1520-0469(1993)050<3928:IATWSA>2.0.CO;2Marsh, D. R. (2011). Chemical-dynamical coupling in the mesosphere and lower thermosphere(1st ed.). In M. A.Abdu, et al. (Eds.), Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA Special Sopron Book Ser (Vol. 2, pp. 3–17). Dordrecht: Springer. https://doi.org10.1007/978-94-007-0326-1_1McIntyre, M. E. (2015a). Balanced flow(2nd ed.). In G. R.North, et al. (Eds.), Encyclopedia of Atmospheric Sciences (pp. 298–303). London, UK: Academic Press. https://doi.org10.1016/B978-0-12-382225-3.00484-9McIntyre, M. E. (2015b). Potential vorticity(2nd ed.). In G. R.North, et al. (Eds.), Encyclopedia of Atmospheric Sciences (pp. 375–383). London, UK: Academic Press. https://doi.org10.1016/B978-0-12-382225-3.00140-7McLandress, C., Scinocca, J. F., Shepherd, T. G., Reader, M. C., & Manney, G. L.(2013). Dynamical control of the mesosphere by orographic and nonorographic gravity wave drag during the extended northern winters of 2006 and 2009. Journal of the Atmospheric Sciences, 70, 2152–2169. https://doi.org10.1175/JAS-D-12-0297.1Meraner, K., Schmidt, H., Manzini, E., Funke, B., & Gardini, A. (2016). Sensitivity of simulated mesospheric transport of nitrogen oxides to parameterized gravity waves. Journal of Geophysical Research: Atmospheres, 121, 12,045–12,061. https://doi.org10.1002/2016JD025012Nygård, T., Vihma, T., Birnbaum, G., Harmann, J., King, J., Lachlan-Cope, T., et al. (2016). Validation of eight atmospheric reanalyses in the Antarctic Peninsula region. Quarterly Journal of the Royal Meteorological Society, 142, 684–692. https://doi.org10.1002/qj.2691Pedatella, N. M., Raeder, K., Anderson, J. L., & Liu, H.-L. (2014). Ensemble data assimilation in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research: Atmospheres, 119, 9793–9809. https://doi.org10.1002/2014JD021776Phillips, N. A. (1966). The equations of motion for a shallow rotating atmosphere and the “traditional approximation”. Journal of the Atmospheric Sciences, 23, 626–628. https://doi.org10.1175/1520-0469(1966)023<0626:TEOMFA>2.0.CO;2Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107(A12), 1468. https://doi.org10.1029/2002JA009430Piegl, L., & Tiller, W. (1997). The NURBS Book. Berlin, Germany: Springer-Verlag.Plougonven, R., & Zhang, F. (2014). Internal gravity waves from atmospheric jets and fronts. Reviews of Geophysics, 52, 33–76. https://doi.org10.1002/2012RG000419Plumb, R. A. (1983). Baroclinic instability of the summer mesosphere: A mechanism for the quasi-two-day wave?Journal of the Atmospheric Sciences, 40, 262–270. https://doi.org10.1175/1520-0469(1983)040<0262:BIOTSM>2.0.CO;2Rančić, M., Purser, R. J., & Mesinger, F. (1996). A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quarterly Journal of the Royal Meteorological Society, 122, 959–982. https://doi.org10.1002/qj.49712253209Randall, C. E., Harvey, V. L., Holt, L. A., Marsh, D. R., Kinnison, D., Funke, B., & Bernath, P. F.(2015). Simulation of energetic particle precipitation effects during the 2003–2004 Arctic winter. Journal of Geophysical Research: Space Physics, 120, 5035–5048. https://doi.org10.1002/2015JA021196Randel, W. J., & Lait, L. R. (1991). Dynamics of the 4-day wave in the Southern Hemisphere polar stratosphere. Journal of the Atmospheric Sciences, 48, 2496–2508. https://doi.org10.1175/1520-0469(1991)048<2496:DOTDWI>2.0.CO;2Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609–1625. https://doi.org10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24, 3624–3648. https://doi.org10.1175/JCLI-D-11-00015.1Schunk, R. W. (2012). Ionosphere-thermosphere physics: Current status and problems. In Modeling the Ionosphere-Thermosphere System, Geophysical Monograph Series (Vol. 201, pp. 3–12). https://doi.org10.1029/2012GM001351Schunk, R., & Nagy, A. (2009). Ionospheres: Physics, Plasma Physics, and Chemistry(2nd ed.). New York: Cambridge University Press.Simmons, A. J. (1974). Baroclinic instability at the winter stratopause. Quarterly Journal of the Royal Meteorological Society, 100, 531–540. https://doi.org10.1002/qj.49710042603Simmons, A. J. (1977). Baroclinic instability in the summer mesosphere. Quarterly Journal of the Royal Meteorological Society, 103, 211–215. https://doi.org10.1002/qj.49710343515Simmons, A. J., & Burridge, D. M. (1981). An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Monthly Weather Review, 109, 758–766. https://doi.org10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2Siskind, D. E., Sassi, F., Randall, C. E., Harvey, V. L., Hervig, M. E., & Balley, S. M. (2015). Is a high-altitude meteorological analysis necessary to simulate thermosphere-stratosphere coupling?Geophysical Research Letters, 42, 8225–8230. https://doi.org10.1002/2015GL065838Smith, A. K. (2003). The origin of stationary planetary waves in the upper mesosphere. Journal of the Atmospheric Sciences, 60, 3033–3041. https://doi.org10.1175/1520-0469(2003)060<3033:TOOSPW>2.0.CO;2Smith, A. K. (2012). Global dynamics of the MLT. Surveys in Geophysics, 33, 1177–1230. https://doi.org10.1007/s10712-012-9196-9Smith, R. W., & Hernandez, G. (1995). Vertical winds in the thermosphere within the polar cap. Journal of Atmospheric and Solar-Terrestrial Physics, 57, 611–620. https://doi.org10.1016/0021-9169(94)00101-SSmith, K. L., Neely, R. R., Marsh, D. R., & Polvani, L. M. (2014). The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). Journal of Advances in Modeling Earth Systems, 6, 883–901. https://doi.org10.1002/2014MS000346Smolarkiewicz, P. K., Kühnlein, C., & Wedi, N. P. (2014). A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. Journal of Computational Physics, 263, 185–205. https://doi.org10.1016/j.jcp.2014.01.031Spiteri, R. J., & Ruuth, S. J. (2002). A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM Journal on Numerical Analysis, 40, 469–491. https://doi.org10.1137/S0036142901389025Swinbank, R., & O'Neill, A. (1994). A stratosphere-troposphere data assimilation system. Monthly Weather Review, 122, 686–702. https://doi.org10.1175/1520-0493(1994)122<0686:ASTDAS>2.0.CO;2Tapping, K. E. (2013). The 10.7 cm solar radio flux (F10.7). Space Weather, 11, 394–406. https://doi.org10.1002/swe.20064Taylor, M. (2011). Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. In P. H.Lauritzen, et al. (Eds.), Numerical Techniques for Global Atmospheric Models (Lecture Notes in Computational Science and Engineering (Vol. 80, pp. 357–380). New York: Springer. https://doi.org10.1007/978-3-642-11640-7_12Taylor, M. A., Edwards, J., & St.-Cyr, A. (2008). Petascale atmospheric models for the community climate system model: New developments and evaluation of scalable dynamical cores. Journal of Physics: Conference Series, 125, 12023. https://doi.org10.1088/1742-6596/125/1/012023Taylor, M., & Fournier, A. (2010). A compatible and conservative spectral element method on unstructured grids. Journal of Computational Physics, 229, 5879–5895. https://doi.org10.1016/j.jcp.2010.04.008Taylor, M. A., St.-Cyr, A., & Fournier, A. (2009). A non-oscillatory advection operator for the compatible spectral element method. In G.Allen, et al. (Eds.), Computational Science ICCS 2009 Part II (Lecture Notes in Computer Science) (Vol. 5545, pp. 273–282). Berlin: Springer. https://doi.org10.1007/978-3-642-11640-7_12Taylor, M., Tribbia, J., & Iskandrani, M. (1997). The spectral element method for the shallow water equations on the sphere. Journal of Computational Physics, 130, 92–108. https://doi.org10.1006/jcph.1996.5554Telford, P., Braesicke, P., Morgenstern, O., & Pyle, J. A. (2008). Technical note: Description and assessment of a nudged version of the new dynamics Unified Model. Atmospheric Chemistry and Physics, 8, 1701–1712. https://doi.org10.5194/acp-8-1701-2008Vanneste, J. (2013). Balance and spontaneous wave generation in geophysical flows. Annual Review of Fluid Mechanics, 45, 147–172. https://doi.org10.1146/annurev-fluid-011212-140730Wang, H., Fuller-Rowell, T. J., Akmaev, R. A., Hu, M., Kleist, D. T., & Iredell, M. D. (2011). First simulations with a whole atmosphere data assimilation and forecast system: The January 2009 major sudden stratospheric warming. Journal of Geophysical Research, 116, A12321. https://doi.org10.1029/2011JA017081Warn, T., Bokhove, O., Shepherd, T. G., & Vallis, G. K. (1995). Rossby number expansions, slaving principles, and balance dynamics. Quarterly Journal of the Royal Meteorological Society, 121, 723–739. https://doi.org10.1002/qj.49712152313Warner, T. T. (2011). Numerical Weather and Climate Prediction. New York: Cambridge University Press.White, A. A., Hoskins, B. J., Roulstone, I., & Staniforth, A. (2005). Consistent approximate models of the global atmosphere: Shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quarterly Journal of the Royal Meteorological Society, 131, 2081–2107. https://doi.org10.1256/qj.04.49Zerroukat, M., Wood, N., & Staniforth, A. (2005). A monotonic and positive-definite filter for a semi-Lagrangian inherently conserving and efficient (SLICE) scheme. Quarterly Journal of the Royal Meteorological Society, 131, 2923–2936. https://doi.org10.1256/qj.04.97Zou, X., Navon, I. M., & Ledimet, F. X. (1992). An optimal nudging data assimilation scheme using parameter estimation. Quarterly Journal of the Royal Meteorological Society, 118, 1163–1186. https://doi.org10.1002/qj.49711850808
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
An iterative dynamic initialization method is presented to produce balanced initial conditions for whole atmospheric global modeling. In this method, a global hydrostatic numerical model is iteratively nudged toward ground-to-space wind and temperature profiles at specific date and time. Ground-to-space atmospheric profiles are obtained by fitting spline curves to reanalyses below the lower mesosphere and empirical model results in the upper atmosphere. An optimal nudging coefficient is determined by examining if reasonable structure of mesospheric gravity wave (GW) momentum forcing and residual mean meridional circulations can be obtained from balanced initial conditions. Estimated mesospheric GW momentum forcing is found to exhibit a distinctive structure with larger (smaller) values in the lower and upper mesosphere (in the midmesosphere), when compared with parameterized climatological forcing. The iterative dynamic initialization allows for dynamical balance among the model's prognostic variables and reduces excitation of spurious GWs and noises at initial time. However, theoretical imbalances, measured by the ellipticity of the nonlinear balance equation, are not completely eliminated in balanced flows, and they are found in narrow tropospheric frontal regions and over localized areas associated with the large-scale instability in the midlatitude middle atmosphere. These imbalances are discussed in the context of their potential relation to generation of planetary-scale and inertia GWs around the middle atmospheric and tropospheric jets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Details
Title
Dynamic Initialization for Whole Atmospheric Global Modeling
Author
I.-S. Song 1
; H.-Y. Chun 2
; Jee, G 1
; S.-Y. Kim 3
; Kim, J 3 ; Y.-H. Kim 4
; Taylor, M A 5
1 Korea Polar Research Institute, Incheon, South Korea
2 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
3 Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea
4 Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
5 Sandia National Laboratories, Albuquerque, NM, USA