Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the increasing applications of unmanned aerial vehicles (UAVs) in surveying, mapping, rescue, etc., the security of autonomous flight in complex environments becomes a crucial issue. Deploying autonomous UAVs in complex environments typically requires them to have accurate dynamic obstacle perception, such as the detection of birds and other flying vehicles at high altitudes, as well as humans and ground vehicles at low altitudes or indoors. This work’s primary goal is to cope with both static and moving obstacles in the environment by developing a new framework for UAV planning and control. Firstly, the point clouds acquired from the depth camera are divided into dynamic and static points, and then the velocity of the point cloud clusters is estimated. The static point cloud is used as the input for the local mapping. Path finding is simplified by identifying key points among static points. Secondly, the design of a trajectory tracking and obstacle avoidance controller based on the control barrier function guarantees security for moving and static obstacles. The path-finding module can stably search for the shortest path, and the controller can deal with moving obstacles with high-frequency. Therefore, the UAV can deal with both long-term planning and immediate emergencies. The framework proposed in this work enables a UAV to operate in a wider field, with better security and real-time performance.

Details

Title
EF-TTOA: Development of a UAV Path Planner and Obstacle Avoidance Control Framework for Static and Moving Obstacles
Author
Du, Hongbao; Wang, Zhengjie; Zhang, Xiaoning
First page
359
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829794695
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.