Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study examines the effects of alkaline treatment on the mechanical and thermal properties of miswak fiber-reinforced polylactic acid. The treatment was performed with three distinct concentrations of sodium hydroxide (NaOH): 1 wt %, 2 wt %, and 3 wt %. The difficulties of interaction between the surface of the fiber and the matrix, which led to this treatment, is caused by miswak fiber’s hydrophilic character, which impedes its ability to bind with hydrophobic polylactic acid. FTIR, tensile, TGA, and DMA measurements were used to characterize the composite samples. A scanning electron microscope (SEM) was used to examine the microstructures of many broken samples. The treatment is not yet especially effective in enhancing interfacial bonding, as seen by the uneven tensile strength data. The effect of the treated fiber surface significantly improves the tensile strength of miswak fiber-reinforced PLA composites. Tensile strength improves by 18.01%, 6.48%, and 14.50%, respectively, for 1 wt %, 2 wt %, and 3 wt %. Only 2 wt %-treated fiber exhibits an increase of 0.7% in tensile modulus. The modulus decreases by 4.15 % at 1 wt % and by 19.7% at 3 wt %, respectively. The TGA curve for alkali-treated fiber composites demonstrates a slight increase in thermal stability when compared to untreated fiber composites at high temperatures. For DMA, the composites with surface treatment have higher storage moduli than the composite with untreated miswak fiber, especially for the PLA reinforced with 2 wt % alkali miswak fiber, proving the effectiveness of the treatment.

Details

Title
Effect of Alkaline Treatment on Mechanical and Thermal Properties of Miswak (Salvadora persica) Fiber-Reinforced Polylactic Acid
Author
Rafiqah, S Ayu 1   VIAFID ORCID Logo  ; Diyana, A F Nur 1 ; Abdan, Khalina 2 ; Sapuan, S M 3   VIAFID ORCID Logo 

 Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] 
 Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected]; Department of Agriculture and Biotechnological Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia 
 Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] 
First page
2228
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812740136
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.