Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Resistant starch appears to have promising effects on hypertension, cardiovascular and enteric illness. The influence of resistant starch on intestinal physiological function has drawn great attention. In this study, we first analyzed the physicochemical characteristics, including the crystalline properties, amylose content, and anti-digestibility among different types of buckwheat-resistant starch. The influence of resistant starch on the physiological functions of the mouse intestinal system, contained defecation, and intestinal microbes were also evaluated. The results showed that the crystalline mold of buckwheat-resistant starch changed from A to B + V after acid hydrolysis treatment (AHT) and autoclaving enzymatic debranching treatment (AEDT). The amylose content in AEDT was higher than in AHT and raw buckwheat. Moreover, the anti-digestibility of AEDT was also stronger than that in AHT and raw buckwheat. The buckwheat-resistant starch can promote bowel intestinal tract movement. The quantity of intestinal microbe was regulated by buckwheat-resistant starch. Our research demonstrates an effective preparation method for improving the quality of buckwheat-resistant starch and found that buckwheat-resistant starch has the role of adjusting the distribution of the intestinal flora and maintaining the health of the body.

Details

Title
The Effect of Buckwheat Resistant Starch on Intestinal Physiological Function
Author
Zhan-Bin Sun 1   VIAFID ORCID Logo  ; Zhang, Xiao 1 ; Yan, Yi 1   VIAFID ORCID Logo  ; Jia-Liang, Xu 1 ; Lu, Xin 2 ; Ren, Qing 1 

 School of Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China 
 State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China 
First page
2069
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819444431
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.