Abstract

This paper presents the effects of chloride ions on OPC (Ordinary Portland Cement) concrete coated with fly ash-based geopolymer mortar. The coating was applied to protect concrete in coastal areas. The mortar was a mixture of fly ash and alkali activator with a mass ratio of 65:35. The alkali activator was a mixture of Na2SiO3 and NaOH 12M with a mass ratio of 2.5:1. The coating thickness varied at 2.5 cm, 4 cm, and 6 cm. All specimens were exposed to a marine area with seawater curing for 90 days. The mechanical properties of the specimen were determined by compressive strength. Chloride penetration was assessed for durability. A series of tests were carried out after 0, 30, 60, and 90 days of immersion. Compressive strength after a 90-day immersion increased by 34.16%, 39.81% and 31.38% for thickness 2.5 cm, 4 cm, and 6 cm respectively. Compressive strength with a thickness of 4 cm reached 52 MPa, which was the highest strength. The binding capacity of the chloride in geopolymer coatings was more than 80% and could reduce the free chloride content in concrete. Geopolymer mortar coating on OPC concrete showed good results in compressive strength and resistance to chloride attack from sea water. The recommended coating thickness for optimum results suitable for application is 4 cm.

Details

Title
Effect of Chloride Ions on Concrete with Geopolymer Coatings in Coastal Area
Author
Nastiti, S F 1 ; Ekaputri, J J 1 

 Departement of Civil Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia 
Publication year
2020
Publication date
May 2020
Publisher
IOP Publishing
ISSN
17551307
e-ISSN
17551315
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2555771835
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.