Full Text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most industrial processes are regulated using PID control. However, many such processes often operate far from optimally because PID may not be the most suitable control method. Moreover, second-order models represent a large class of all controlled systems. This work studies the performance of some commonly used industrial PID controllers relative to MPC to understand when it is more suitable to use Model predictive control. MPC is used for this comparison because it has been the most successful industrial controller after PID. It can be concluded from the studies that improved performance can be achieved with MPC, even for modest dead time and when the damping ratio is relatively low. These improvements are prominent for dead-time dominant systems, whose dead-time to time-constant ratio is at least three.

Details

Title
The Effect of Dead-Time and Damping Ratio on the Relative Performance of MPC and PID on Second Order Systems
Author
Yusuf Abubakar Sha’aban 1   VIAFID ORCID Logo 

 Department of Electrical Engineering, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia; [email protected] or [email protected]; Center for International Studies, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
First page
1138
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767177017
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.