Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Loess landslides caused by the dry-wet cycling processes are the most common geological disasters in the Yili region of China and have caused significant economic loss and casualties. Therefore, there is an urgency to study the mechanism of landslide disasters. However, research on loess landslide disasters under dry-wet cycling conditions in the Yili River Valley is still underdeveloped, and the research foundations are relatively weak. Based on the characteristics of high and stable mica content in Yili loess, this research probed the changes in shear strength and microstructure of loess with different mica contents (0%, 5%, 10%, and 15%) after different dry-wet cycles (0, 1, 3, 5, 7, 10, 15, and 20) using direct shear testing and a scanning electron microscopy. The results showed that the mica content had a negative relationship with the shear strength of loess. For the same number of dry-wet cycles, the higher the mica content was, the lower the loess’ shear strength, especially in the first five dry-wet cycles. The influence of mica content on shear strength parameters was not similar. The impact was more significant for cohesion. With increased mica content, cohesion gradually decreased. The effect was minor with the internal friction angle. With the rise in mica content, the angle slightly increased with slight variations. Under certain dry-wet cycling conditions, micro-particle content in the loess decreased continuously, the average reduction can reach 11.25%, the content of small and medium particles tends to increase, the average increments were 6.21% and 3.1%, and volatility changes in large particle content. However, the overall increasing trend remains. Accordingly, the number of micropores and small pores decreased, the average reduction was 7.63% and 5.48%, the number of medium pores and large pores increased, and the average increments were 6.13% and 6.99%, respectively. All these changes were more evident in the first three dry-wet cycles and when the mica content increased from 0% to 5%. This study will be beneficial as a reference for the occurrence mechanisms of loess landslide under dry-wet cycling conditions in the Yili area.

Details

Title
Effect of Mica Content on Shear Strength of the Yili Loess under the Dry-Wet Cycling Condition
Author
Shi, Guangming 1   VIAFID ORCID Logo  ; Li, Xinyu 2 ; Guo, Zekun 3   VIAFID ORCID Logo  ; Zhang, Zizhao 1 ; Zhang, Yanyang 1 

 School of Geological and Mining Engineering, Xinjiang University, Urumqi 830017, China; State Key Laboratory for Geomechanics and Deep Underground Engineering, Xinjiang University, Urumqi 830017, China 
 School of Geological and Mining Engineering, Xinjiang University, Urumqi 830017, China; Faculty of Engineering, China University of Geosciences, Wuhan 430074, China 
 School of Geological and Mining Engineering, Xinjiang University, Urumqi 830017, China 
First page
9569
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700767044
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.