Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to provide effective solid lubrication to Ni3Al coating, 10 wt.% Ag and different amounts of MoO3 solid lubricant were mechanically mixed with the SHSed Ni3Al powder and sprayed HVOF. Microstructure, mechanical properties, and tribological behavior from 25 °C to 800 °C of the coatings were studied, and the basic wear mechanisms were explored and discussed as well. Results show that the hardness and adhesive bonding strength of the coatings are slightly decreased, while there is little effect on the microstructure and mechanical properties of the Ni3Al-based composite coating when the content of MoO3 additive in the feedstock powder is lower than 15 wt.%. The composite coating formed by feedstock powder containing 15 wt.% MoO3 additive also presents excellent anti-friction and anti-wear performance from 25 °C to 800 °C, especially at 800 °C, where a complete, smooth, and thicker lubricating film comprised of NiO, Al2O3, MoO3, and Ag2MoO4 was formed, which reduced the friction coefficient (COF) and wear rate (WR) to the lowest value of 0.36 and 6.03 × 10−5 mm3/(Nm), respectively. An excessive amount of MoO3 in the feedstock powder (20 wt.%) results in inferior interlayer bonding of the formed coating, and the coating is more prone to delamination and abrasive wear above 200 °C.

Details

Title
Effect of MoO3 Content on Ni3Al-Ag-MoO3 Composite Coating Microstructure and Tribological Properties
Author
Fan, Xiangjuan 1 ; Li, Wensheng 2   VIAFID ORCID Logo  ; Yang, Jun 3 ; Zhu, Shengyu 3 ; Cui, Shuai 1 ; Cheng, Bo 1   VIAFID ORCID Logo  ; Zhai, Haimin 1 

 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 
 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China 
 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
First page
624
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791606530
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.