Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The present study investigated the effect of stocking density and dietary carbon sources on the water quality, oxidative status and immune-related of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions (BFT). Eight groups were established at two levels of stocking densities (140 fish per m3: low stocking density, LSD) and (280 fish per m3: high stocking density, HSD) (5.15 ± 1.12 g) and kept in eight biofloc units containing water without carbon sources (control groups) or with glycerol, molasses, or starch. Overall, this study has reported that immune response gene expression is better in LSD than HSD and improved by carbon addition. More specifically, based on the overall performances of tilapia reared under LSD or HSD, using molasses is recommended as a carbon source to promote the performances and health status of Nile tilapia cultured in a biofloc system.

Abstract

The present study investigated the effect of stocking density and dietary carbon sources on the water quality, oxidative status, and immune-related genes of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions (BFT). Eight groups were established at two levels of stocking densities (140 fish per m3: low stocking density, LSD) and (280 fish per m3: high stocking density, HSD) (5.15 ± 1.12 g) and kept in eight biofloc units containing water without carbon sources (control groups) or with glycerol, molasses, or starch. Red blood cells count, hemoglobin, and hematocrit values were reduced in fish stocked in control groups at LSD and HSD than biofloc groups. Control fish groups reared at both LSD and HSD have the highest significant (p < 0.05) white blood cells number than other fish groups. Meanwhile, fish groups that received glycerol, molasses, and starch maintained in both LSD and HSD presented a higher significant (p < 0.05) monocyte % than in the control group reared at both LSD and HSD. The fish group reared in biofloc conditions (BFT) using starch carbon source and reared at the HSD presented a significantly higher (p < 0.05) increase in total serum protein and albumin levels as well as globulin value than the control fish group reared at both LSD and HSD. The highest glucose and cortisol levels were showed in the control fish group reared at both LSD and HSD. Fish maintained in glycerol-based biofloc at LSD attained the highest (p < 0.05) serum superoxide dismutase (SOD), glutathione reductase (GR), and catalase than other experimental groups. Regarding the nonspecific immune status, significantly increased expression of CC-chemokines, CXC-chemokines, TLR7 and IL-8 genes was found in molasses based biofloc groups. The data of the present study revealed that using molasses promotes health status of Nile tilapia cultured in a biofloc system.

Details

Title
The Effect of Stocking Density and Carbon Sources on the Oxidative Status, and Nonspecific Immunity of Nile tilapia (Oreochromis niloticus) Reared under Biofloc Conditions
Author
Shourbela, Ramy M 1 ; Khatab, Shymaa A 2 ; Hassan, Mohamed M 3   VIAFID ORCID Logo  ; Hien Van Doan 4   VIAFID ORCID Logo  ; Dawood, Mahmoud A O 5   VIAFID ORCID Logo 

 Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt; [email protected] 
 Genetics and Genetic Engineering, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt; [email protected] 
 Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected]; Department of Genetics, Faculty of Agriculture, Menoufia University, Sheben El-Kom 51132, Egypt 
 Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Innoviative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 
 Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Center for Applied Research on the Environment and Sustainability, The American University in Cairo, New Cairo 11835, Egypt 
First page
184
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524377552
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.