Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Thermal Energy Storage (TES) is a key feature in the sizing of thermal systems and energy management. The Phase Change Material (PCM) can store a huge amount of heat in the form of latent heat. However, a good design of the TES unit is required to absorb thermal energy and charge quickly. In the present study, a combination of optimum fin design and nanoadditives are used to design a shell and tube shape TES unit. The Taguchi optimization method is employed to maximize the melting rate by optimizing the arrangement shape of fins and the type and the volume fractions of nanoparticles. The results showed that long fins should be mounted at the bottom and short fins at the top, so that the PCM melts down at the bottom quickly, and consequently, a natural convection circulation occurs at the bottom and advances in the solid PCM. The short fins at the top allow a good natural convection circulation at the top. An increase in the volume fraction of nanoparticles increases the melting rate. An optimum design shows a 20% more melting rate compared to a poor design.

Details

Title
The Effect of Variable-Length Fins and Different High Thermal Conductivity Nanoparticles in the Performance of the Energy Storage Unit Containing Bio-Based Phase Change Substance
First page
2884
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2500267551
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.