Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pneumatic conveying pipe is an important part of the coal industry. Its working environment is harsh, and it is mainly affected by serious wear and corrosion, which affects its operating life. Studying a method of strengthening the pipe wall of pneumatic conveying pipe is of great significance. In this paper, nickel-based alloy coatings with different WC (tungsten carbide) contents were prepared using an oscillating laser-cladding process, and the micro-characterization characteristics, wear resistance and corrosion resistance of the laser-cladded layer were discussed. The main conclusions are as follows: The microstructure of the laser-cladded layer gradually grows from the plane crystals and cellular crystals at the bottom to the relatively coarse columnar crystals in the middle, and finally to a large number of equiaxed crystals in the upper part. Moreover, with an increase in WC content, more fine equiaxed crystals are formed, mainly due to the decrease in temperature gradient with the increase in distance from the fusion line. Also, with an increase in WC content, the hardness and wear resistance of the nickel-based alloy are improved. When 20% WC is added, the laser-cladded layer shows the best corrosion resistance in 3.5 wt.% NaCl solution, and its polarization resistance is 16% lower than that when 10% WC is added. This study provides a technical reference for improving the operating life of pneumatic conveying pipelines.

Details

Title
Effect of WC Content on the Wear and Corrosion Properties of Oscillating Laser-Cladding-Produced Nickel-Based Coating
Author
Li, Xuening 1 ; Zhang, Songyan 1 ; Liu, Wei 1 ; Pang, Xiaotong 1 ; Tong, Yonggang 1   VIAFID ORCID Logo  ; Zhang, Mingjun 1 ; Zhang, Jian 1 ; Wang, Kaiming 2   VIAFID ORCID Logo 

 College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China 
 College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China; State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China 
First page
1614
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869296079
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.