It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, a new adsorbent was investigated for CO2 adsorption in the fixed-bed column. Poly (acrylonitrile) nanofibers were prepared by electrospinning, then grafting under gamma irradiation with glycidyl methacrylate (GMA). Then, the nanofibers were modified with ethanolamine (EA), diethylamine (DEA) and triethylamine (TEA) to adsorb carbon dioxide molecules. Dynamic adsorption experiments were performed with a mixture of CH4, CO2 in a constant bed column at ambient pressure and temperature and CO2 feed concentration (5%). The maximum adsorption capacity is 2.84 mmol/g for samples with 172.26% degree of grafting (DG) in 10 kGy. Also, the degree of amination with ethanolamine was achieved equal to 170.83%. In addition, the reduction of the regeneration temperature and the stability of this adsorbent after four cycles indicated the high performance of this adsorbent for CO2 adsorption.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Semnan University, Faculty of Chemical, Gas and Petroleum Engineering, Semnan, Islamic Republic of Iran (GRID:grid.412475.1) (ISNI:0000 0001 0506 807X)
2 Nuclear Science and Technology Research Institute, Nuclear Fuel Cycle Research School, Tehran, Islamic Republic of Iran (GRID:grid.459846.2) (ISNI:0000 0004 0611 7306)