It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
18F-sodium fluoride (18F-NaF) is a positron emission tomography (PET) radiotracer widely used in skeletal imaging and has also been proposed as a biomarker of active calcification in atherosclerosis. Like most PET radiotracers, 18F-NaF is typically administered intravenously. However in small animal research intravenous administrations can be challenging, because partial paravenous injection is common due to the small calibre of the superficial tail veins and repeat administrations via tail veins can lead to tissue injury therefore limiting the total number of longitudinal scanning points. In this paper, the feasibility of using intra-peritoneal route of injection of 8F-NaF to study calcification in mice was studied by looking at the kinetic and uptake profiles of normal soft tissues and bones versus intra-vascular injections. Dynamic PET was performed for 60 min on nineteen isoflurane-anesthetized male Swiss mice after femoral artery (n = 7), femoral vein (n = 6) or intraperitoneal (n = 6) injection of 8F-NaF. PET data were reconstructed and the standardised uptake value (SUV) and standardised uptake value ratio (SUVr) were estimated from the last three frames between 45- and 60-min and 8F-NaF uptake constant (Ki) was derived by Patlak graphical analysis. In soft tissue, the 18F-NaF perfusion phase changes depending on the type on injection route, whereas the uptake phase is similar regardless of the administration route. In bone tissue SUV, SUVr and Ki measures were not significantly different between the three administration routes. Comparison between PET and CT measures showed that bones that had the highest CT density displayed the lowest PET activity and conversely, bones where CT units were low had high 8F-NaF uptake. Intraperitoneal injection is a valid and practical alternative to the intra-vascular injections in small-animal 18F-NaF PET imaging providing equivalent pharmacokinetic data. CT outcome measures report on sites of stablished calcification whereas PET measures sites of higher complexity and active calcification.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Queen’s Medical Research Institute (QMRI), British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Edinburgh, UK (GRID:grid.4305.2) (ISNI:0000 0004 1936 7988); University of Edinburgh, Edinburgh Imaging, Edinburgh, UK (GRID:grid.4305.2) (ISNI:0000 0004 1936 7988)