Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a kind of novel porous ceramics, wood ceramics can be used for filtration, friction, energy storage and electrode materials, etc. In current work, the carbon based wood ceramics (C WCMs) was prepared using pine wood powder and phenolic resin as starting materials. The effects of filling rate of wood powder and resin concentration on pore characteristics and properties of C WCMs were characterized and analyzed with different techniques. Furthermore, the association among porosity of C WCMs, filling rate of wood powder and resin concentration was explored with multiple regression model. The results showed that: increasing the resin concentration and the filling rate of wood powder can improve the mechanical properties of C WCMs, but reduce the porosity and air permeability; when resin concentration is more than 50%, a large amount of caking will appear in the C WCMs, causing internal defects; changing the filling rate under a certain resin concentration can obtain the C WCMs with better pore structure; the porosity of C WCMs has a good linear relationship with resin concentration and filling rate, under the condition that sintering process and the size of wood powder are determined.

Details

Title
Effects of Filling Rate and Resin Concentration on Pore Characteristics and Properties of Carbon Based Wood Ceramics
Author
Guo, Xiurong 1 ; Gao, Qi 1   VIAFID ORCID Logo  ; Du, Danfeng 2 ; Sun, Chaowei 2 

 College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; [email protected] 
 School of Traffic and Transportation, Northeast Forestry University, Harbin 150040, China; [email protected] (D.D.); [email protected] (C.S.) 
First page
2441
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530163650
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.