Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Antibiotic residues lead to the risk of resistance gene enrichment, which is the main reason why penicillin mycelial dreg (PMD) is defined as hazardous waste. Hydrothermal treatment (HT) is an effective method to treat penicillin mycelial dreg, but the degradation mechanism of penicillin is unclear. In the study, we researched the effects of pH (4–10) at 80–100 °C and metal ions (Mn2+, Fe2+, Cu2+, and Zn2+) at several concentrations on the HT of penicillin, identified the degradation products (DPs) under different conditions, and evaluated the antibacterial activity of hydrothermally treated samples. The results show that penicillin degradation kinetics highly consistent with pseudo-first-order model (R2 = 0.9447–0.9999). The degradation rates (k) at pH = 4, 7, and 10 were 0.1603, 0.0039, and 0.0485 min−1, indicating acidic conditions were more conducive to penicillin degradation. Among the four tested metal ions, Zn2+ had the most significant catalytic effect. Adding 5 mg·L−1 Zn2+ caused 100% degradation rate at pH = 7 after HT for 60 min. Six degradation products (DPs) with low mass-to-charge (m/z ≤ 335) were detected under acidic condition. However, only two and three DPs were observed in the samples catalyzed by Zn2+ and alkali, respectively, and penilloic acid (m/z = 309) was the main DPs under these conditions. Furthermore, no antibacterial activity to Bacillus pumilus was detected in the medium with up to 50% addition of the treated samples under acidic condition. Even though acid, alkali, and some metal ions can improve the degradation ability of penicillin, it was found that the most effective way for removing its anti-bacterial activity was under the acidic condition. Therefore, resistance residue indicates the amount of additive in the process of resource utilization, and avoids the enrichment of resistance genes.

Details

Title
Effects of pH and Metal Ions on the Hydrothermal Treatment of Penicillin: Kinetic, Pathway, and Antibacterial Activity
Author
Zhang, Qiaopan 1 ; Niu, Dongze 2   VIAFID ORCID Logo  ; Ni, Shensheng 2 ; An, Wenying 2 ; Li, Chunyu 2 ; Huhe, Taoli 2 ; Wang, Chongqing 3 ; Jiang, Xingmei 4 ; Ren, Jianjun 2 

 Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China 
 Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China 
 Beijing General Station of Animal Husbandry, Beijing 100101, China 
 Bijie Institute of Animal Husbandry and Veterinary Sciences, Bijie 551700, China 
First page
10701
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711323898
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.