Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Inoculation with plant-growth-promoting rhizobacteria (PGPR) effectively increases plant growth in agriculture. However, the role of the rhizobiome in plant growth remains unclear. Methods: Biolog Ecoplate and 16S rRNA gene high-throughput sequencing techniques were used to analyze the changes in microbial community diversity, composition, and function after PGPR inoculation. Soil physicochemical and enzyme activities were also measured. Results: PGPR inoculation significantly promoted the growth of alfalfa. Using a Biolog Ecoplate, inoculation improved the metabolic activity and carbon source utilization of soil microorganisms. PGPR inoculation significantly increased the diversity and richness of the soil bacterial community in the rhizosphere of alfalfa and increased the relative abundance of key bacterial taxa such as Arthrobacter, Sphingomonas, and Bacillus, which are conducive to plant growth. Conclusions: Inoculation with PGPR enriched bacterial taxa and improved the utilization of carbon sources beneficial for plant growth. PGPR inoculation induced changes in microbial community diversity, and relevant functions in the rhizosphere contributed to alfalfa growth under field conditions.

Details

Title
Effects of Plant-Growth-Promoting Rhizobacteria on Soil Bacterial Community, Soil Physicochemical Properties, and Soil Enzyme Activities in the Rhizosphere of Alfalfa under Field Conditions
Author
Tang, Lu; Shi, Yimeng; Zhang, Yilu; Yang, Dihe; Guo, Changhong
First page
537
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14242818
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806509299
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.