Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An emulsion template method was an effective way to prepare oleogels. However, there were few reports on how hydroxypropyl methylcellulose-pectin (HPMC-PC) mixtures affected the physicochemical properties of the obtained oleogels. In this study, the oleogels were prepared by an emulsion template method. The influences of HPMC and PC concentrations on the formation and physical properties of the emulsions and oleogels were investigated, by analyzing particle size distribution, microstructure, rheological test, oil loss, and crystallinity. The results of particle sizes and microstructure showed that a high concentration of HPMC and PC exhibited a better emulsification performance. The rheological tests indicated that a high concentration of HPMC and PC contributed to an increase in the mechanical strength of emulsions and oleogels. Moreover, an increase in an HPMC and PC concentration was beneficial to reduce the oil loss of oleogels. However, the change of HPMC and PC concentrations had no significant effect on the X-ray diffraction pattern of oleogels. This study could provide a theoretical basis for the construction of polysaccharide-based oleogels.

Details

Title
Effects of Polysaccharide Concentrations on the Formation and Physical Properties of Emulsion-Templated Oleogels
Author
Jiang, Zongbo 1 ; Bai, Xinpeng 2 

 School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China 
 School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, No. 58 Renmin Avenue, Haikou 570228, China 
First page
5391
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711364238
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.