Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soybean is the major food and oil crop in the world. However, soybean continuous cropping can significantly reduce soybean yield. In this study, the effects of Rhizophagus intraradices on soybean growth and the composition of microbial communities in soybean roots under different continuous cropping regimes were investigated at maturity. The results showed that the mycorrhizal colonization rate was affected by R. intraradices and soybean continuous cropping. The mycorrhizal colonization rate was the highest in the inoculated soybean plants under 1 year of continuous cropping. Inoculation of R. intraradices significantly increased soybean plant growth. The greatest biomass parameters were obtained from the soybean plants inoculated with R. intraradices under 0 years of continuous cropping. Bacterial diversity was decreased by soybean continuous cropping, while the opposite result occurred for fungal diversity. Moreover, inoculation of R. intraradices could increase and decrease the diversity of bacteria and fungi in soybean roots, respectively. It also indicated that R. intraradices and soybean continuous cropping had significant effects on the composition of microbial communities in soybean roots. Proteobacteria and Ascomycota were the most dominant bacterial and fungal phylum in all samples, respectively. It would contribute to developing a biocontrol strategy to alleviate the soybean continuous cropping obstacles.

Details

Title
Effects of Rhizophagus intraradices on Plant Growth and the Composition of Microbial Communities in the Roots of Continuous Cropping Soybean at Maturity
Author
Ying-Zhi, Zhang; Qiao, Wei
First page
6623
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545194408
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.