Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Forest aboveground biomass (AGB) plays an important role in regulating the global carbon cycle and is thus an essential component of ecosystem functioning. In the relationships between biodiversity and ecosystem functioning (BEF), studies have shown that many biotic factors (e.g., species, functional traits, and large trees) and abiotic factors have significant impacts on AGB. However, the relative strength of these affecting factors remains unclear. In this study, we analyzed woody plants (diameter at breast height [DBH] ≥ 1 cm) within a 1.6 ha plot in an old-growth subtropical natural forest in southern China. We used structural equation models to test the effects of tree diversity (species, phylogenetic, functional, and size inequality), functional composition, large trees, and environmental factors (topography, soil nutrients, and understory light) on AGB. Our results indicated that size inequality, the community-weighted mean of maximum DBH (CWM_MDBH), and large trees had significant, positive effects on AGB (p < 0.001), while lower soil phosphorus content was found to promote an increase in AGB. Furthermore, large trees, which were mostly composed of dominant tree species, were the main driver of AGB, and the effect of functional composition (e.g., CWM_MDBH) on AGB was substantially reduced by large trees. We argue that the selection effect plays a key role in regulating BEF relationships in subtropical natural forests and conclude that retaining large-diameter trees and dominant species, along with sustaining a complex stand structure, are key measures for improving productivity.

Details

Title
Effects of Tree Diversity, Functional Composition, and Large Trees on the Aboveground Biomass of an Old-Growth Subtropical Forest in Southern China
Author
Wang, Yaoyi 1 ; Song, Zheng 2 ; Zhang, Xiongqing 3 ; Wang, Hongxiang 1   VIAFID ORCID Logo 

 Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China 
 Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing 100091, China 
 Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China 
First page
994
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819403899
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.