Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The electrochemical behavior and electrodeposition of Sn were investigated in choline chloride (ChCl)–urea deep eutectic solvents (DESs) containing SnCl2 by cyclic voltammetry (CV) and chronoamperometry techniques. The electrodeposition of Sn(II) was a quasi-reversible, single-step two-electron-transfer process. The average transfer coefficient and diffusion coefficient of 0.2 M Sn(II) in ChCl–urea at 323 K were 0.29 and 1.35 × 10−9 cm2∙s−1. The nucleation overpotential decreased with the increase in temperature and SnCl2 concentration. The results of the chronoamperometry indicated that the Sn deposition on tungsten electrode occurred by three-dimensional instantaneous nucleation and diffusion controlled growth using the Scharifker–Hills model. Scanning electron microscopy (SEM) showed that the morphology of the deposits is uniform, as a dense and compact film prepared by potentiostatic electrolysis on Cu substrate. X-ray diffraction (XRD) analysis revealed that the deposits were pure metallic Sn.

Details

Title
Electrochemical Behavior and Electrodeposition of Sn Coating from Choline Chloride–Urea Deep Eutectic Solvents
First page
1154
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2465858161
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.