Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, the nucleation and growth kinetics behavior of aluminum (Al) were investigated in the Choline-chloride (ChCl)-urea deep eutectic solvent (DES) ionic liquids. The studies of cyclic voltammetric and chronoamperometry demonstrated that the electrodeposition process of Al was controlled by three-dimensional progressive nucleation and instantaneous nucleation. And the growth of nuclei is a diffusion-controlled process. The diffusion coefficient of Al ions was calculated at 343 K, that is, 1.773 × 10−10 cm2/s. The Al coating was obtained on the surface of the AZ31 magnesium alloy electrode under appropriate conditions. According to the surface morphology of the Al film, it could be inferred that the theoretical deposit thickness is similar to the actual thickness, and the apparent diffusion rate of Al ions is slower than the diffusion coefficient in the electrolytes. So, in the later deposition, lamellar Al along the diffusion direction were formed, and lamellar depleted Al zones existed around the big grain Al-rich region.

Details

Title
Electrochemical Nucleation and Growth Mechanism of Aluminum on AZ31 Magnesium Alloys
First page
46
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2476460739
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.