It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Predicting the penetration depth during electron beam welding (EBW) is important, but the accuracy of current predictive models is highly varied, depending on the type and number of data used. This paper develops and compares several penetration depth prediction models for EBW and uniquely compares the influence of the number and type of data used, as well as the measurement and modelling methods. Although accelerating voltage, beam current and welding speed data are essential modelling inputs, additional data for beam focal position and beam shape, measured using a novel 4-slit beam probing method, greatly improve the accuracy of predictions for models based on an empirical equation, a second-order regression and an artificial neural network (ANN). Optimised models predict weld depths that deviate, on average, by less than 5% from measured depths, are valid for very broad linear electron beam power density ranges (86–324 J/mm) and are close to the estimated 4% inherent variability in the process and its measurement. Within this linear electron beam power density range, the ANN yields accurate and reliable depth predictions, demanding as few as 36 welding trials, decreasing the number required for models that do not consider beam focal position and shape, for the same targeted accuracy, by more than 60%. Adding large volumes of virtual data generated by less reliable analytical or regression models did not improve the predictive capability for the ANN developed in this study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Lancaster University, Department of Engineering, Bailrigg, Lancaster, UK (GRID:grid.9835.7) (ISNI:0000 0000 8190 6402); The National Structural Integrity Research Centre (NSIRC), Cambridge, UK (GRID:grid.9835.7)
2 Lancaster University, Department of Engineering, Bailrigg, Lancaster, UK (GRID:grid.9835.7) (ISNI:0000 0000 8190 6402)
3 TWI Ltd, Cambridge, UK (GRID:grid.4843.b) (ISNI:0000 0001 1703 001X)