Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vegetation in arid central Asia (ACA) has been experiencing significant changes due to substantial warming and humidification since the 1980s. These changes are inhomogeneous due to the ecological vulnerability and topographic complexity of ACA. However, the heterogeneity of vegetation changes has received limited attention in the literature, which has focused more on the region’s overall general features. Thus, this paper analyzes the regional heterogeneity of vegetation changes during the growing season in ACA and further explores their underlying drivers. The results reveal an antiphase trend of vegetation, with an increase in eastern ACA and a decrease in western ACA. This antiphase pattern is primarily constrained by the divergent hydrothermal and climatic contexts of different elevation gradients. At elevations higher than 300 m (in the eastern ACA), increased growing season precipitation dominates vegetation greening. Conversely, vegetation at elevations lower than 300 m (in western ACA) is influenced by growing season soil water, which is driven by winter precipitation (pre-growing season precipitation). Additionally, the temperature could indirectly impact vegetation trends by altering precipitation, soil water, glaciers, snow cover, and runoff. Our findings have implications for restoring the ecosystem and sustainable development in ACA.

Details

Title
Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia
Author
Yang, Yujie 1 ; Huang, Wei 1 ; Xie, Tingting 1 ; Li, Chenxi 1 ; Deng, Yajie 1 ; Chen, Jie 2 ; Liu, Yan 1 ; Ma, Shuai 1 

 Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China 
 Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China 
First page
5922
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748562537
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.