Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, human–robot interaction technology has been considered as a key solution for smart factories. Surface electromyography signals obtained from hand gestures are often used to enable users to control robots through hand gestures. In this paper, we propose a dynamic hand-gesture-based industrial robot control system using the edge AI platform. The proposed system can perform both robot operating-system-based control and edge AI control through an embedded board without requiring an external personal computer. Systems on a mobile edge AI platform must be lightweight, robust, and fast. In the context of a smart factory, classifying a given hand gesture is important for ensuring correct operation. In this study, we collected electromyography signal data from hand gestures and used them to train a convolutional recurrent neural network. The trained classifier model achieved 96% accuracy for 10 gestures in real time. We also verified the universality of the classifier by testing it on 11 different participants.

Details

Title
EMG-Based Dynamic Hand Gesture Recognition Using Edge AI for Human–Robot Interaction
Author
Kim, EunSu 1 ; Shin, JaeWook 1 ; Kwon, YongSung 2 ; Park, BumYong 2 

 Department of Electronic Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea[email protected] (J.S.) 
 Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea 
First page
1541
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799621129
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.