Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The field of prognostic maintenance aims at predicting the remaining time for a system or component to continue being used under the desired performance. This time is usually named as Remaining Useful Life (RUL). The current study proposes a novel approach for the RUL estimation of coating segments placed on a hot rolling mill machine. A prediction method was developed, providing real-time updates of the RUL prediction during the rolling milling process. The proposed approach performs energy analysis on measurements of segment surface temperatures and hydraulic forces. It uses nonparametric statistical processes to update the predictions, within a prediction horizon/window, indicating the number of remaining products to be processed. To assess the probability of failure within the defined prediction window, Maximum Likelihood Estimation is used. The proposed methodology was implemented in a software prototype in the MATLAB environment and tested in an industrial use case coming from a steel parts manufacturer, facilitating testing and validation of the suggested approach. Real-world data were acquired from the operational machine, while the validation results support that the proposed methodology demonstrates reasonable performance and robustness against product type variations.

Details

Title
Energy-Based Prognosis of the Remaining Useful Life of the Coating Segments in Hot Rolling Mill
Author
Anagiannis, Ioannis; Nikolakis, Nikolaos
First page
6827
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533958627
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.