Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Energy renovations of the building stock are a paramount objective of the European Union (EU) to combat climate change. A tool for renovation progress monitoring is energy performance certificate (EPC) labelling. The present study tested the effect of different EPC label classifications on a national database, which comprises ~25,000 EPC values from apartment buildings, detached houses, office buildings, and educational, commercial, and service buildings. Analysing the EPC classes labelling resulting from four different EU methods, we estimated the annual renovation rates, costs, energy savings, and CO2 emissions reduction that would affect the national building stock if each of them was adopted, to fulfil the European Climate Target Plan by the year 2033. The ISO 52003-1:2017 two-point and one-point methods determined a very uneven distribution of renovation rates, from 0.45% to ~9%. Conversely, the Directive 15% recently proposed in COM/2021/802 with uniform rates determined smaller differences and standard deviation, not pushing renovations above 3.70%, namely a rate that once fine-tuned can stimulate realistic, yet effective renovation campaigns. The major differences in renovation rates provided by the studied methods show the need for a harmonized strategy such as the Directive proposal to enable achievement of European targets.

Details

Title
Energy Performance Certificate Classes Rating Methods Tested with Data: How Does the Application of Minimum Energy Performance Standards to Worst-Performing Buildings Affect Renovation Rates, Costs, Emissions, Energy Consumption?
Author
Ferrantelli, Andrea 1   VIAFID ORCID Logo  ; Kurnitski, Jarek 1   VIAFID ORCID Logo 

 FinEst Centre for Smart Cities (Finest Centre), Tallinn University of Technology, 19086 Tallinn, Estonia; Department of Civil Engineering, Aalto University, 00076 Aalto, Finland 
First page
7552
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728471096
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.