Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In view of endowing the surface of abutments, a component of titanium dental implant systems, with antioxidant and antimicrobial properties, a surface layer coated with epigallocatechin gallate (EGCg), a polyphenol belonging to the class of flavonoids, was built on titanium samples. To modulate interfacial properties, EGCg was linked either directly to the surface, or after populating the surface with terminally linked polyethyleneglycol (PEG) chains, Mw ~1600 Da. The underlying assumption is that fouling-resistant, highly hydrated PEG chains could reduce non-specific bioadhesion and magnify intrinsic EGCg properties. Treated surfaces were investigated by a panel of surface/interfacial sensitive techniques, to provide chemico–physical characterization of the surface layer and its interfacial environment. Results show: (i) successful EGCg coupling for both approaches; (ii) that both approaches endow the Ti surface with the same antioxidant properties; (iii) that PEG-EGCg coated surfaces are more hydrophilic and show a significantly higher (>50%) interaction force with water. Obtained results build up a rationale basis for evaluation of the merits of finely tuning interfacial properties of polyphenols coated surfaces in biological tests.

Details

Title
Engineering Interfacial Environment of Epigallocatechin Gallate Coated Titanium for Next-Generation Bioactive Dental Implant Components
Author
Iviglia, Giorgio  VIAFID ORCID Logo  ; Morra, Marco
First page
2661
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774911749
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.