It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Soft clay formations are extensively located in many coastal areas around the world. The significant high compressibility and low shear strength of these formations impose challenging engineering problems. The deep cement/lime-mix-in-place method is one of the ground improvement techniques exhibiting successful use in stabilizing soft clay. Analysis and design of the deep mixing systems necessitate the identification of the additive content, the proportions of the lime to cement and the characteristics of the stabilized clay. This paper investigates experimentally the influence of adding lime and cement or cement alone, as stabilizing additives, on the engineering behavior of an Egyptian soft clay extracted from the north delta region. A series of laboratory tests were carried out considering, different additive contents of 8, 10, 12, and 14% of the dry weight, with different proportions of lime to cement of 50:50, 25:75 and 0:100. A series of unconfined compression strength tests were performed after different periods; one week, four weeks and 8 weeks, to assess the effect of curing period on the stabilized clay response. In addition, one dimensional consolidation tests were carried out to evaluate the compressibility properties of the stabilized clay. This study declared that the use of an additive content in the range of 12% and more is recommended to improve the characteristics of the considered Egyptian clay. It was pointed out that addition of lime and cement to soft clay significantly increases the strength characteristics and significantly reduces the compressibility characteristics of such clay.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Civil Engineering Dept, Faculty of Engineering, Helwan University, Cairo, Egypt