Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wi-Fi researchers are trying hard to extend battery life by optimizing 802.11 power save. The rising number of Wi-Fi devices and IoT devices and daily demands have reduced Station (STA) device power consumption. Better memory management at the Access Point (AP) side is also needed, so that AP can store maximum data to deliver sleepy STA devices. There are three main contributions of this study. The first one focuses on a power-saving mechanism scheme with an adaptive change to Listen Interval (LI) based on the battery status of station devices. The second contribution aims to examine better memory management for the AP buffer to store packets that will in the future deliver power-saving STA when awake. The third contribution, under the implementation of the proposed method, includes Wi-Fi corner cases covered as Beacon frames missed via STA, the keep-alive factor, and the upper-layer time taken to care for and ensure the delivery of unicast/multicast/broadcast data. The proposed approach introduced 802.11 protocols to share battery status, a protocol to announce proposed features via AP, and a protocol to change LI at runtime. Simulation results show that the proposed scheme performs better than 802.11 power saving in terms of power usage at the STA and access point memory management.

Details

Title
An Enhancement for IEEE 802.11 STA Power Saving and Access Point Memory Management Mechanism
Author
Bhargava, Vishal 1 ; Nallanthighal Raghava 2 

 Computer Engineering Department, Delhi Technological University, Delhi 11042, India 
 Department of Electronics & Communication Engineering, Delhi Technological University, Delhi 110042, India 
First page
3914
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748516932
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.