Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Revealing the charge transfer path is very important for studying the photocatalytic mechanism and improving photocatalytic performance. In this work, the charge transfer path turned by the piezoelectricity in Ag-BaTiO3 nanofibers is discussed through degrading methyl orange. The piezo-photocatalytic degradation rate of Ag-BaTiO3 is much higher than the photocatalysis of Ag-BaTiO3 and piezo-photocatalysis of BaTiO3, implying the coupling effect between Ag nanoparticle-induced localized surface plasmon resonance (LSPR), photoexcited electron-hole pairs, and deformation-induced piezoelectric field. With the distribution density of Ag nanoparticles doubling, the LSPR field increases by one order of magnitude. Combined with charge separation driven by the piezoelectric field, more electrons in BaTiO3 nanofibers are excited by plasmon-induced resonance energy transfer to improve the photocatalytic property.

Details

Title
Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field
Author
Chen, Peng 1 ; Li, Xiu 2 ; Ren, Zeqian 2 ; Wu, Jizhou 1   VIAFID ORCID Logo  ; Li, Yuqing 1 ; Liu, Wenliang 1 ; Li, Peng 2   VIAFID ORCID Logo  ; Fu, Yongming 2   VIAFID ORCID Logo  ; Ma, Jie 1 

 State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China 
 State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 
First page
987
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716510751
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.