Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential.

Details

Title
(Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives
Author
Breuls, Natacha 1 ; Giacomazzi, Giorgia 1 ; Sampaolesi, Maurilio 2   VIAFID ORCID Logo 

 Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium 
 Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, 3000 KU Leuven, Belgium; Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, and Interuniversity Institute of Myology, University of Pavia, 27100 Pavia, Italy 
First page
429
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548335566
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.