Full text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The semantic segmentation of remote sensing images faces two major challenges: high inter-class similarity and interference from ubiquitous shadows. In order to address these issues, we develop a novel edge loss reinforced semantic segmentation network (ERN) that leverages the spatial boundary context to reduce the semantic ambiguity. The main contributions of this paper are as follows: (1) we propose a novel end-to-end semantic segmentation network for remote sensing, which involves multiple weighted edge supervisions to retain spatial boundary information; (2) the main representations of the network are shared between the edge loss reinforced structures and semantic segmentation, which means that the ERN simultaneously achieves semantic segmentation and edge detection without significantly increasing the model complexity; and (3) we explore and discuss different ERN schemes to guide the design of future networks. Extensive experimental results on two remote sensing datasets demonstrate the effectiveness of our approach both in quantitative and qualitative evaluation. Specifically, the semantic segmentation performance in shadow-affected regions is significantly improved.

Details

Title
ERN: Edge Loss Reinforced Semantic Segmentation Network for Remote Sensing Images
Author
Liu, Shuo; Ding, Wenrui; Liu, Chunhui; Liu, Yu; Wang, Yufeng; Li, Hongguang
Publication year
2018
Publication date
Sep 2018
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2126869200
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.