Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Assessing individual aging has always been an important topic in aging research. Caenorhabditis elegans (C. elegans) has a short lifespan and is a popular model organism widely utilized in aging research. Studying the differences in C. elegans life stages is of great significance for human health and aging. In order to study the differences in C. elegans lifespan stages, the classification of lifespan stages is the first task to be performed. In the past, biomarkers and physiological changes captured with imaging were commonly used to assess aging in isogenic C. elegans individuals. However, all of the current research has focused only on physiological changes or biomarkers for the assessment of aging, which affects the accuracy of assessment. In this paper, we combine two types of features for the assessment of lifespan stages to improve assessment accuracy. To fuse the two types of features, an improved high-efficiency network (Att-EfficientNet) is proposed. In the new EfficientNet, attention mechanisms are introduced so that accuracy can be further improved. In addition, in contrast to previous research, which divided the lifespan into three stages, we divide the lifespan into six stages. We compared the classification method with other CNN-based methods as well as other classic machine learning methods. The results indicate that the classification method has a higher accuracy rate (72%) than other CNN-based methods and some machine learning methods.

Details

Title
Estimation of Caenorhabditis Elegans Lifespan Stages Using a Dual-Path Network Combining Biomarkers and Physiological Changes
Author
Yao, Song 1 ; Liu, Jun 2 ; Yin, Yanhao 1 ; Tang, Jinshan 3   VIAFID ORCID Logo 

 School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China 
 School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan 430065, China 
 Department of Health Administration and Policy, College of Public Health, George Mason University, Fairfax, VA 22030, USA 
First page
689
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748260148
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.