Content area
Full Text
Difficult questions will be raised as models of the human brain get closer to replicating its functions, explain Nita A. Farahany, Henry T. Greely and 15 colleagues.
If researchers could create brain tissue in the laboratory that might appear to have conscious experiences or subjective phenomenal states, would that tissue deserve any of the protections routinely given to human or animal research subjects?
This question might seem outlandish. Certainly, today's experimental models are far from having such capabilities. But various models are now being developed to better understand the human brain, including miniaturized, simplified versions of brain tissue grown in a dish from stem cells - brain organoids1,2. And advances keep being made.
These models could provide a much more accurate representation of normal and abnormal human brain function and development than animal models can (although animal models will remain useful for many goals). In fact, the promise of brain surrogates is such that abandoning them seems itself unethical, given the vast amount of human suffering caused by neurological and psychiatric disorders, and given that most therapies for these diseases developed in animal models fail to work in people. Yet the closer the proxy gets to a functioning human brain, the more ethically problematic it becomes.
There is now a need for clear guidelines for research, albeit ones that can be adapted to new discoveries. This is the conclusion of many neuroscientists, stemcell biologists, ethicists and philosophers - ourselves included - who gathered in the past year to explore the ethical dilemmas raised by brain organoids and related neuroscience tools. A workshop was held in May 2017 at the Duke Initiative for Science & Society at Duke University in Durham, North Carolina, with limited support from the US National Institutes of Health (NIH) BRAIN Initiative. A similar US meeting was held last month on related topics.
Here we lay out some of the issues that we think researchers, funders, review boards and the public should discuss as a first step to guiding research on brain surrogates.
SAFE SURROGATES
Three classes of brain surrogate offer researchers a way to investigate how the living human brain works, without the need for potentially risky - if not ethically impossible - procedures in people.
Organoids. Brain organoids can...