Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nickel-based super alloys exhibit high strength, oxidation and corrosion resistance; however, the machining of these alloys is a challenge that can be overcome with effective cooling/lubrication techniques. The use of a minimum quantity lubrication (MQL) technique is limited to lower cutting parameters due to the tremendous heat produced during the machining of Inconel 718. Sustainable and eco-friendly machining of Inconel 718 can be attained using MQL and lubricants based on nanofluids because of their improved heat transfer capabilities. For that purpose, the performance of hybrid nanofluid-MQL is examined. In this novel study, graphene and hexagonal boron nitride (hBN) nanoparticles are reinforced with palm oil and delivered to the machining interface using an MQL setup. The machining experiments are performed under the conditions of dry, wet, MQL and MQL with graphene/hBN deposited in palm oil. The machining performance under selected cutting conditions is assessed by analyzing the surface roughness, tool wear, chip morphology and surface quality of the machined workpiece. A comparison of results showcased the effectiveness of hybrid nanofluid-MQL with improvement in surface finish, reduction in tool wear and favorable chip forms concerning all other machining conditions.

Details

Title
Evaluation of Surface Roughness, Tool Wear and Chip Morphology during Machining of Nickel-Based Alloy under Sustainable Hybrid Nanofluid-MQL Strategy
Author
Makhesana, Mayur A  VIAFID ORCID Logo  ; Patel, Kaushik M; Bagga, Prashant J
First page
315
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748298149
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.